首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vp/Vs ratio along the Vøring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field
Authors:R Mjelde  T Raum  P Digranes  H Shimamura  H Shiobara  S Kodaira  
Institution:a Institute of Solid Earth Physics (IFJ), Allégt. 41, University of Bergen, 5007, Bergen, Norway;b Institute of Seismology and Volcanology (ISV), Hokkaido University, Sapporo 060, Japan
Abstract:A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).
Keywords:  ring Margin  Passive continental margins  Vp/Vs ratio  Lithological prediction  Stress-aligned microcracks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号