Modification of the Penman method for computing bare soil evaporation |
| |
Authors: | Fatih Konukcu |
| |
Affiliation: | Nam?k Kemal University, Tekirdag Agricultural Faculty, Irrigation and Drainage Department, TR‐59030 Tekirdag, Turkey |
| |
Abstract: | The Penman equation, which calculates potential evaporation, was modified by Staple (1974, Soil Science Society of America Proceedings 38 : 837) to include in it the relative vapour pressure hs of an unsaturated soil to predict actual evaporation from a soil surface. This improved the prediction when the difference between the temperature of the soil surface and ambient air is relatively small. The objectives of this study were (i) to revise it further using the actual temperature of the soil surface and air to provide the upper boundary condition in computing evaporative flux from the soil surface and (ii) to determine the range of water content for which the modified form of the Penman equation is applicable. The method adopted was tested by a series of outdoor experiments with a clay soil. The method of Staple (1974) overestimated the rate of evaporation above the water content 0·14 m3 m?3 (up to 30% deviation), whereas the new method agreed well with the measured rates (maximum 7% deviation). Below 0·14 m3 m?3 water content, both methods underestimated, but the Staple (1974) method deviated more from the measured values: the deviations were above 70% and around 30% for the Staple (1974) and the new methods respectively. Although the new method provided accurate solutions for a wider range of water content from saturation to the lower limit of the liquid phase of a particular soil, the modification did not respond to the vapour phase of the soil moisture. Therefore, in the dry range (i.e. in the vapour phase in which the flow was entirely as vapour), either resistance models or a Fickian equation should be used. Although the effect of salinity on the measured rates was significant, the model erroneously calculated the same rates for both saline and non‐saline conditions. The effect of soil texture can easily be accounted by defining appropriate matric potential water content ψm(θ) and soil relative humidity water content hs(θ) relationships. Copyright © 2007 John Wiley & Sons, Ltd. |
| |
Keywords: | drying soil salinity water content soil relative humidity vapour pressure |
|
|