首页 | 本学科首页   官方微博 | 高级检索  
     


Cyclic Thermo-Mechanical Analysis of Wellbore in Underground Compressed Air Energy Storage Cavern
Authors:S. Mohanto  K. Singh  T. Chakraborty  D. Basu
Affiliation:1. Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India
2. University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
Abstract:The compressed air energy storage (CAES) method is a viable method of storing surplus energy underground when there is a mismatch between energy generation and demand. Wellbores embedded in rock are an integral part of energy storage structures, and are used for injecting and extracting the compressed air. During injection and production cycles, the storage reservoir and wellbore are subjected to cyclic change in external pressure and temperature, which may cause failure of the wellbore. In this paper, cyclic thermo-mechanical analysis of a horizontal wellbore in an underground CAES cavern is performed using finite element analysis. The rock behavior is simulated using the Mohr-Coulomb constitutive law. The reduction in the yield strength of rock with increase in the number of loading cycles is taken into account in the analysis. Parametric sensitivity studies are carried out to study the effects of dilation and friction angles of rock, the ratio of in situ horizontal and vertical stresses, loading frequency, and the magnitude of the temperature cycles in the cavern on the wellbore performance for different types of rock. The thermo-mechanical cyclic behavior leads to plastic strains that are greater than those obtained by performing mechanical analysis only. Significantly large deformation is generated in rock for large dilation angle and high loading frequencies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号