首页 | 本学科首页   官方微博 | 高级检索  
     


On the Likelihood and Fluctuations of Gaussian Realizations
Authors:Gilles Bourgault
Affiliation:1. Computer Modelling Group Ltd., Office #150, 3553-31 Street N.W., Calgary, Alberta, Canada, T2L 2K7
Abstract:The likelihood of Gaussian realizations, as generated by the Cholesky simulation method, is analyzed in terms of Mahalanobis distances and fluctuations in the variogram reproduction. For random sampling, the probability to observe a Gaussian realization vector can be expressed as a function of its Mahalanobis distance, and the maximum likelihood depends only on the vector size. The Mahalanobis distances are themselves distributed as a Chi-square distribution and they can be used to describe the likelihood of Gaussian realizations. Their expected value and variance are only determined by the size of the vector of independent random normal scores used to generate the realizations. When the vector size is small, the distribution of Mahalanobis distances is highly skewed and most realizations are close to the vector mean in agreement with the multi-Gaussian density model. As the vector size increases, the realizations sample a region increasingly far out on the tail of the multi-Gaussian distribution, due to the large increase in the size of the uncertainty space largely compensating for the low probability density. For a large vector size, realizations close to the vector mean are not observed anymore. Instead, Gaussian vectors with Mahalanobis distance in the neighborhood of the expected Mahalanobis distance have the maximum probability to be observed. The distribution of Mahalanobis distances becomes Gaussian shaped and the bulk of realizations appear more equiprobable. However, the ratio of their probabilities indicates that they still remain far from being equiprobable. On the other hand, it is observed that equiprobable realizations still display important fluctuations in their variogram reproduction. The variance level that is expected in the variogram reproduction, as well as the variance of the variogram fluctuations, is dependent on the Mahalanobis distance. Realizations with smaller Mahalanobis distances are, on average, smoother than realizations with larger Mahalanobis distances. Poor ergodic conditions tend to generate higher proportions of flatter variograms relative to the variogram model. Only equiprobable realizations with a Mahalanobis distance equal to the expected Mahalanobis distance have an expected variogram matching the variogram model. For large vector sizes, Cholesky simulated Gaussian vectors cannot be used to explore uncertainty in the neighborhood of the vector mean. Instead uncertainty is explored around the n-dimensional elliptical envelop corresponding to the expected Mahalanobis distance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号