首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetite compositions and oxygen fugacities of the Khibina magmatic system
Authors:Igor D Ryabchikov  LN Kogarko
Institution:

aInstitute for Geology of Ore Deposits, Russian Academy of Sciences, Moscow, Russia

bVernadsky Institute of Geochemistry, Russian Academy of Sciences, Moscow, Russia

Abstract:Most titanomagnetite in the Khibina alkaline igneous complex, sampled through 500 m of a vertical cross-section, is represented by Ti-rich varieties. The ulvöspinel component is most commonly around 55 mol%, rarely reaching up to 80 mol%.

We calculated an fO2T diagram for magnetite + ilmenite + titanite + clinopyroxene + nepheline + alkali feldspar and magnetite + titanite+ clinopyroxene + nepheline + alkali feldspar phase assemblages at a hedenbergite activity of 0.2. The diagram shows that magnetites with 55 mol% of ulvöspinel crystallized at oxygen fugacities just slightly below the quartz–fayalite–magnetite buffer. More Ti-rich varieties crystallized at higher temperatures and slightly lower ΔQMF values, whereas more Ti-poor magnetites crystallized at or below about 650 °C.

Under the redox conditions estimated for the apatite-bearing intrusion of the Khibina complex (close to the QFM buffer), substantial quantities of methane may only form during cooling below 400 °C in equilibrium with magma. However, even at higher orthomagmatic temperatures and redox conditions corresponding to ΔQMF = 0, the hydrogen content in the early magmatic stage is not negligible. This hydrogen present in the gas phase at magmatic temperatures may migrate to colder parts of a solidifying magma chamber and trigger Fischer-Tropsch-type reactions there. We propose therefore, that methane in peralkaline systems may form in three distinct stages: orthomagmatic and late-magmatic in equilibrium with a melt and — due to Fischer-Tropsch-type reactions — post-magmatic in equilibrium with a local mineral assemblage.

Keywords:Oxygen fugacity  Khibina complex  Fe–Ti oxides  Titanite  Alkaline magmas  Hydrocarbons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号