首页 | 本学科首页   官方微博 | 高级检索  
     

气象预报模式参数化方案对重污染过程PM2.5浓度预报效果的影响
引用本文:韩丽娜,唐晓,陈科艺,周慧,孔磊,张佩文,黄树元,吴倩,曹凯,王自发. 气象预报模式参数化方案对重污染过程PM2.5浓度预报效果的影响[J]. 气候与环境研究, 2021, 26(3): 312-322. DOI: 10.3878/j.issn.1006-9585.2020.20073
作者姓名:韩丽娜  唐晓  陈科艺  周慧  孔磊  张佩文  黄树元  吴倩  曹凯  王自发
作者单位:成都信息工程大学,成都 610225;中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029;中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029;成都信息工程大学,成都 610225;湖南省气象台,长沙 410118;中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029;中国科学院大学,北京 100049
基金项目:国家重点研发计划2018YFC0213503,国家自然科学基金面上项目41875164,中国科学院信息化专项课题XXH13506-302,中国科学院战略性先导科技专项XDA19040201
摘    要:针对北京市2016年12月16~21日的重污染过程,基于嵌套网格空气质量模式预报系统(NAQPMS),面向气象驱动模式WRF中7类物理过程的参数化方案,通过单扰动和组合扰动方式构建了51组不同的WRF模式运行配置,对比分析不同方案配置下NAQPMS对这次重污染过程细颗粒物(PM2.5)浓度预报的性能.结果表明:在重污染...

关 键 词:细颗粒物(PM2.5)浓度预报  气象参数化方案优选  大气重污染过程  北京
收稿时间:2020-06-27

Inflence of Meteorological Forecast Model Parameterization Schemes on PM2.5 Concentration Forecast Effect in Heavy Pollution Process
Lina HAN,Xiao TANG,Keyi CHEN,Hui ZHOU,Lei KONG,Peiwen ZHANG,Shuyuan HUANG,Qian WU,Kai CAO,Zifa WANG. Inflence of Meteorological Forecast Model Parameterization Schemes on PM2.5 Concentration Forecast Effect in Heavy Pollution Process[J]. Climatic and Environmental Research, 2021, 26(3): 312-322. DOI: 10.3878/j.issn.1006-9585.2020.20073
Authors:Lina HAN  Xiao TANG  Keyi CHEN  Hui ZHOU  Lei KONG  Peiwen ZHANG  Shuyuan HUANG  Qian WU  Kai CAO  Zifa WANG
Affiliation:1.Chengdu University of Information Technology, Chengdu 6102252.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1000293.Hunan Provincial Meteorological Observatory, Changsha 4101184.University of Chinese Academy of Sciences, Beijing 100049
Abstract:Based on the Nested Air Quality Prediction Model System (NAQPMS), this paper is oriented toward the parameterization of seven types of physical processes in the weather-driven model, Weather Research and Forecast Model (WRF). Fifty-one sets of different WRF model operating configurations are constructed through single disturbance and combined disturbance methods. The paper compares and analyzes the performance of NAQPMS for PM2.5 concentration forecasting during the heavy pollution period in Beijing from 16–21 December 2016, under different scheme configurations. The results show that during the heavy pollution period, the PM2.5 concentration forecast accuracy of the combined disturbance optimization scheme at the central station and the suburban station is significantly higher than the forecast results under the configuration of the baseline parameterization scheme. The combined disturbance optimization scheme can significantly improve the model’s forecast error for the end time of the heavy pollution process under the baseline scheme, and significantly reduce the forecast deviation that exists on 21 December 2016. Judging from the statistical indicators, the city center station has the highest forecast correlation under the combined optimization scheme, with a correlation coefficient>0.7; from the perspective of the root mean square error of the forecast, the combined optimization scheme has the smallest error. Furthermore, suburban stations have the highest forecast correlation under the combined optimization scheme, and the deviation from the observations is smaller than that of the central station. From the perspective of the spatial distribution of pollutants and meteorological elements, the combined disturbance optimization scheme can better reproduce the changes in meteorological elements during the pollution period than the baseline scheme. The forecasted wind speed is low and the relative humidity is high, which is conducive to the maintenance and accumulation of high concentrations of PM2.5 in Beijing on 21 December. The results of this paper show that the uncertainty of the parameterization scheme of the meteorological forecasting model is the key source of uncertainty for heavy pollution forecasting. Choosing a suitable parameterization scheme can reduce the simulation deviation of meteorological elements during the heavy pollution period and further increase the PM2.5 concentration forecast accuracy during the heavy pollution period.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《气候与环境研究》浏览原始摘要信息
点击此处可从《气候与环境研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号