首页 | 本学科首页   官方微博 | 高级检索  
     

不同模式误差方案在集合Kalman滤波土壤湿度同化中的比较试验
引用本文:聂肃平,朱江,罗勇. 不同模式误差方案在集合Kalman滤波土壤湿度同化中的比较试验[J]. 大气科学, 2010, 34(3): 580-590. DOI: 10.3878/j.issn.1006-9895.2010.03.10
作者姓名:聂肃平  朱江  罗勇
作者单位:中国科学院大气物理研究所,北京,100029;中国科学院研究生院,北京,100049;国家气候中心,北京,100081;中国科学院大气物理研究所,北京,100029;国家气候中心,北京,100081
基金项目:国家自然科学基金资助项目40905046, 财政部/科技部公益类 (气象) 行业专项GYHY00706005, 中国气象局科技司 “新一代气候系统模式的评估与改进” 项目2009-2012209
摘    要:本文主要目的是探讨不同模式误差方案在土壤湿度同化中的性能。基于集合Kalman滤波同化方法和AVIM (Atmosphere-Vegetation Interaction Model) 陆面模式, 利用理想试验对膨胀因子方案 (Covariance Inflation, 简称CI)、 直接随机扰动方案 (Direct Random Disturbance, 简称DRD)、 误差源扰动方案 (Source Random Disturbance, 简称SRD) 等3种模式误差方案的同化效果进行了比较, 讨论了各方案在不同观测误差、 观测层数、 观测间隔情况下的同化性能。试验结果表明在观测误差估计完全准确的情况下, 3种方案都能获得较好的同化效果, 并且SRD方案相对于真值的均方根误差最小。当观测误差估计不准确时, SRD方案的同化效果仍能基本得以保持, 而CI和DRD方案则对观测误差估计更为敏感, 同化效果下降明显。当同化多层观测时, CI和DRD方案由于难以保持不同层观测之间的匹配关系, 同化结果反而变差, 而SRD方案能有效协调同化多层观测, 增加观测层后同化结果有了进一步的改善。当观测时间间隔较大时, CI和DRD方案的同化效果显著下降; 而SRD方案由于包含了一定的误差订正功能, 在观测稀疏时仍能保持较好的同化效果。

关 键 词:集合Kalman滤波  土壤湿度  模式误差  误差源  资料同化

Comparison Experiments of Different Model Error Schemes in Ensemble Kalman Filter Soil Moisture Assimilation
NIE Suping,ZHU Jiang and LUO Yong. Comparison Experiments of Different Model Error Schemes in Ensemble Kalman Filter Soil Moisture Assimilation[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(3): 580-590. DOI: 10.3878/j.issn.1006-9895.2010.03.10
Authors:NIE Suping  ZHU Jiang  LUO Yong
Affiliation:1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029; Graduate University of Chinese Academy of Sciences, Beijing, 100049; National Climate Center, Beijing, 1000812.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 1000293.National Climate Center, Beijing, 100081
Abstract:The purpose of this paper is to explore the performances of different model error scheme in soil moisture data assimilation. Based on the ensemble Kalman filter (EnKF) and the atmosphere-vegetation interaction model (AVIM), point-scale analysis results for three schemes, 1) covariance inflation (CI), 2) direct random disturbance (DRD), and 3) source random disturbance (SRD), are combined under conditions of different observational error estimations, different observation layers, and different observation intervals using a series of idealized experiments. The results shows that all these schemes obtain good assimilation results when the assumed observational error is an accurate statistical representation of the actual error used to perturb the original truth value, and the SRD scheme has the least root mean square error (RMSE). Overestimation or underestimation of the observational errors can affect the assimilation results of CI and DRD schemes sensitively. The performances of these two schemes deteriorate obviously while the SRD scheme keeps its capability well. When the observation layers or observation interval increase, the performances of both CI and DRD schemes decline evidently. But for the SRD scheme, as it can assimilate multi-layer observations coordinately, the increased observations improve the assimilation results further. Moreover, as the SRD scheme contains a certain amount of model error estimation functions in its assimilation process, it also has a good performance in assimilating sparse-time observations.
Keywords:ensemble Kalman filter   soil moisture   model error   error source   data assimilation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号