首页 | 本学科首页   官方微博 | 高级检索  
     

基于PRCUnet的高分遥感影像建筑物提取
引用本文:徐佳伟,刘伟,单浩宇,史嘉诚,李二珠,张连蓬,李行. 基于PRCUnet的高分遥感影像建筑物提取[J]. 地球信息科学学报, 2021, 23(10): 1838-1849. DOI: 10.12082/dqxxkx.2021.210283
作者姓名:徐佳伟  刘伟  单浩宇  史嘉诚  李二珠  张连蓬  李行
作者单位:1.江苏师范大学地理测绘与城乡规划学院,徐州 2211162.中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
基金项目:江苏省研究生科研与实践创新计划项目(KYCX20_2364);江苏高校优势学科建设工程资助项目;徐州市重点研发计划(社会发展)项目(KC20172);徐州市重点研发计划(社会发展)项目(KC20172);资源与环境信息系统国家重点实验室开放基金项目;江苏省自然资源厅科技创新项目(2021046);江苏省地质矿产勘查局科研项目(2020KY11)
摘    要:基于高分辨率遥感影像的建筑物提取具有重要的理论与实际应用价值,深度学习因其优异的深层特征提取能力,已经成为高分影像提取建筑物的主流方法之一。本文在改进深度学习网络结构的基础上,结合最小外接矩形与Hausdorff距离概念,对建筑物提取方法进行改进。本文主要改进内容为:① 基于Unet网络结构,利用金字塔池化模块 (Pyramid Pooling Module, PPM )的多尺度场景解析特点,残差模块(Residual Block, RB)的特征提取能力以及卷积块注意力模块(Convolutional Block Attention Module, CBAM)对空间信息和通道信息的平衡能力。将金字塔池化、残差结构以及卷积块注意力模块引入到Unet模型中,建立PRCUnet模型。PRCUnet模型更关注语义信息和细节信息,弥补Unet对小目标检测的欠缺;② 基于最小外接矩形与Hausdorff距离,改进建筑物轮廓优化算法,提高模型的泛化能力。实验表明,本文的建筑物提取方法在测试集上准确率、IoU、召回率均达到0.85以上,精度显著优于Unet模型,提取出的建筑物精度更高,对小尺度及不规则的建筑物有较好的提取效果,优化后的建筑物轮廓更接近真实的建筑物边界。

关 键 词:深度卷积神经网络  高分辨率遥感影像  建筑物提取  Unet  池化金字塔  残差路径  卷积块注意力机制  建筑物轮廓优化  
收稿时间:2021-05-21

High-Resolution Remote Sensing Image Building Extraction based on PRCUnet
XU Jiawei,LIU Wei,SHAN Haoyu,SHI Jiacheng,LI Erzhu,ZHANG Lianpeng,LI Xing. High-Resolution Remote Sensing Image Building Extraction based on PRCUnet[J]. Geo-information Science, 2021, 23(10): 1838-1849. DOI: 10.12082/dqxxkx.2021.210283
Authors:XU Jiawei  LIU Wei  SHAN Haoyu  SHI Jiacheng  LI Erzhu  ZHANG Lianpeng  LI Xing
Affiliation:1. School of Geographic Mapping and Urban Rural Planning, Jiangsu Normal University, Xuzhou 221116, China2. State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Abstract:Building extraction based on high-resolution remote sensing images has important theoretical and practical applications. Deep learning has become one of the mainstream methods for extracting buildings from high-resolution images because of its excellent deep feature extraction ability. In this paper, based on an improved structure of deep learning network, we combined the concept of minimum outer rectangle and Hausdorff distance to improve the building extraction method. The main improvements in this paper are: ① Based on the Unet network structure, we employed the multi-scale feature detection ability of Pyramid Pooling Module (PPM), the great feature extraction capability of Residual Block (RB), and the ability to balance spatial and channel information of Convolutional Block Attention Module (CBAM). The PPM, RB, and CBAM were introduced to the Unet model to build the PRCUnet model, which focuses more on semantic and detailed information and overcomes the limitation of Unet in small target detection; ② We improved the building contour optimization algorithm based on the minimum outer rectangle and Hausdorff distance to improve the generalization ability of the model. Experiments show that the accuracy, IoU, and recall of the building extraction method proposed in this paper reached above 0.85 using the test set, significantly higher than those of the Unet model. The PRCUnet model also had better extraction effect on small-scale and irregular buildings than Unet, and the optimized building contours were close to the real building boundaries.
Keywords:deep convolution neural network  high-resolution remote sensing image  building extraction  unet  pyramid pooling  residual block  convolutional block attention module  building contour optimization  
本文献已被 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号