首页 | 本学科首页   官方微博 | 高级检索  
     


Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar
Authors:Lu WANG  Wei QIANG  Haiyun XIA  Tianwen WEI  Jinlong YUAN  Pu JIANG
Abstract:Although coherent Doppler wind lidar (CDWL) is promising in detecting boundary layer height (BLH), differences between BLH results are observed when different CDWL measurements are used as tracers. Here, a robust solution for BLH detections with CDWL is proposed and demonstrated: mixed layer height (MLH) is retrieved best from turbulent kinetic energy dissipation rate (TKEDR), while stable boundary layer height (SBLH) and residual layer height (RLH) can be retrieved from carrier-to-noise ratio (CNR). To study the cause of the BLH differences, an intercomparison experiment is designed with two identical CDWLs, where only one is equipped with a stability control subsystem. During the experiment, it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment. In the ML, a bias up to 2.13 km of the MLH from CNR is found, which is caused by the CNR deviation. In contrast, the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed. In the SBL (RL), the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly. This solution is tested during an observation period over one month. Statistical analysis shows that the root-mean-square errors (RMSE) in the MLH, SBLH, and RLH are 0.28 km, 0.23 km, and 0.24 km, respectively.
Keywords:boundary layer height  coherent Doppler wind lidar  carrier-to-noise ratio  turbulent kinetic energy dissipation rate
本文献已被 万方数据 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号