首页 | 本学科首页   官方微博 | 高级检索  
     


The geology and geophysics of the ambrym caldera,New Hebrides
Authors:G. J. H. McCall  R. W. LeMaitre  A. Malahoff  G. P. Robinson  P. J. Stephenson
Affiliation:1. Geology Dept., University of Western Australia, Australia
2. Geology Dept., University of Melbourne, Australia
3. Hawaii Institute of Geophysics, University of Hawaii, USA
4. Geology Dept., University College of Townsville, Australia
Abstract:Ambrym Island has an unusually large, well-preserved basaltic caldera 13 km across. The caldera occurs in the central region of an early broad composite cone, which formed a north-south line with three smailer volcanoes. Alter the caldera was formed volcanism occurred within it and along fissure lines running nearly east-west. Two volcanic cones are active almost continuously and historic fissure cruptions have been recorded. The caldera formed by quiet subsidence, or by subsidence accompanied by eruption of scoria lappili similar to that erupted prior and subsequent to caldera formation. The collapse was at least 600 metres and radiocarbon dating suggests it took place less than 2000 years ago. The caldera is detined by gravity anomalies 10 to 14 milligals lower than those at its rim suggesting predominantly ash infilling. Aeromagnetic anomalies show a prominent. nearly east-west lineation, with normally magnetised bipole anomalies over the centre of the caldera and over fissure lines east of it. The source of the present volcanic activity is believed to be located along dyke fissures, with a perched magma chamber beneath the caldera. The geophysical evidence on Ambrym, together with that of regional east trending magnetic anomalies and recent bathymetric results, suggests that the volcanic activity is localised by the intersection of an east-west fracture zone with the axis of the New Hebrides island are.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号