首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical study of the time-dependent behaviour of O in the mid-latitude plasmasphere
Authors:J A Murphy  A A Naghmoosh
Institution:

Department of Mathematics and Physics, The University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET, U.K.

Department of Applied and Computational Mathematics, The University of Sheffield, Sheffield S10 2TN, U.K.

Abstract:The behaviour of O2+ at L = 3 in the plasmasphere is studied. Starting with a low O2+ flux-tube content to characterize post-magnetic-storm conditions the time-dependent equations of continuity and momentum for O2+ are solved to give densities and fluxes for a period of several days using both sunspotmaximum and sunspot-minimum parameters. Our results show large amounts of O2+ near the equator at sunspot maximum but relatively little at sunspot minimum, and emphasize the key role of the collisional process between O2+ and O+. It is the combined effects of O2+---O + collisions and thermal diffusion that lead to the large O2+ densities near the equator at sunspot maximum. Both of these mechanisms have less influence at sunspot minimum. At sunspot maximum the O+ layer acts as a collisional barrier below the O2+ production region preventing O2+ from sinking towards regions of high recombination rate. In this production region the effects of thermal diffusion are small and upward flow of O2+ results from the action of the O2+ pressure gradient and the polarization electric field. When the upward flowing O2+ reaches regions in which thermal diffusion has a strong influence it is accelerated to even higher altitudes. The O + barrier is so effective that the diurnal variation of the O+ layer is reflected in the diurnal variation of O2+ near the equator at sunspot maximum. Our sunspot maximum results also indicate that certain types of temperature profiles are more likely to enhance equatorial O2+ densities. The existence of large temperature gradients below 1000 km altitude does not help the flow of O2+ towards the equator. The associated changes in the O+ layer lead to more O2+-O +collisions and a smaller O2+ thermal-diffusion coefficient, the latter being sensitive to the ratio n(H+)/n(O+).
Keywords:To whom all correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号