首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Some chemical characteristics of the brines in Bannock and Tyro Basins: salinity, sulphur compounds, Ca, F, pH, At, PO4, SiO2, NH3
Authors:Davide Bregant  Giulio Catalano  Giuseppe Civitarese  Anna Luchetta
Abstract:Results of the chemical investigation on the Bannock and Tyro Basins are reported.Both basins were found to be hypersaline ( 10 times higher than salinity of normal seawater) and anoxic. In all investigated basins a region of transition, a few meters thick, was identified at depths > 3327 dbar. It is characterized by a sharp gradient of salinity, and all concentrations of analysed species increase strongly except for dissolved oxygen and nitrate, which immediately drop to zero. This region appears as a sharp boundary that prevents mixing. As a result, in the presence of organic matter, an anoxic condition developed with the complete depletion of dissolved oxygen. At the same time, hydrogen sulphide and ammonium accumulated within the brine. Between the Bannock and the Tyro brines differences occur in the measured concentrations of H2S, SO2−4, Ca2+ and NH3. There are some differences also within the Bannock area sub-basins.The Libeccio sub-basin, in the Bannock area, contains a double-layered brine: the upper layer is 140 dbar thick and the lower layer is 300 dbar thick. A second interface between upper and lower brines develops at a depth of 3500 dbar. Nearly all of the measured concentrations vs. depth show the double layer, with the exception of ammonium, the concentration of which remains nearly constant throughout the anoxic column. Profiles of the other species analyzed show remarkable differences on passing from the upper to the lower brine. Hydrogen sulphide, sulphate and fluoride concentrations appear constant and then increase at the second interface. The calcium concentration is also constant in the upper brine, but decreases at the second interface. Total alkalinity and phosphate concentrations show a maximum peak just below the first interface. However, after passing through the second interface all the chemical parameters exhibit an almost constant behaviour down to the bottom.Hypersaline conditions are attributed to the dissolution of Messinian evaporite, and anoxia is suggested to originate from the oxidation of organic matter present in sediments and from the absence of bottom water circulation in such a deep and enclosed environment.The chemical conditions can be summarized as follows: in the Libeccio Basin the values for the species analysed have the ranges: 39–321 psu for ‘salinity’, 8.2−6.5 for pH, 2.7–4.0 mM for total alkalinity, 0.2-0 mM for dissolved oxygen, 0–1669 μM for hydrogen sulphide, 0–198 μM for thiol, 31–99 mM for sulphate, 11–21 mM for calcium, 7–100 μM for fluoride, 0.2–3080 μM for ammonium, 5.8-0 μM for nitrite, 0.2–12 μM for phosphate and 8–130 μM for silicate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号