首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Extended finite element framework for fault rupture dynamics including bulk plasticity
Authors:Fushen Liu  Ronaldo I Borja
Institution:1. ExxonMobil Research and Engineering, , Clinton, NJ 08801, U.S.A.;2. Department of Civil and Environmental Engineering, Stanford University, , Stanford, CA 94305, U.S.A.
Abstract:We present an explicit extended finite element framework for fault rupture dynamics accommodating bulk plasticity near the fault. The technique is more robust than the standard split‐node method because it can accommodate a fault propagating freely through the interior of finite elements. To fully exploit the explicit algorithmic framework, we perform mass lumping on the enriched finite elements that preserve the kinetic energy of the rigid body and enrichment modes. We show that with this technique, the extended FE solution reproduces the standard split‐node solution, but with the added advantage that it can also accommodate randomly propagating faults. We use different elastoplastic constitutive models appropriate for geomaterials, including the Mohr–Coulomb, Drucker–Prager, modified Cam‐Clay, and a conical plasticity model with a compression cap, to capture off‐fault bulk plasticity. More specifically, the cap model adds robustness to the framework because it can accommodate various modes of deformation, including compaction, dilatation, and shearing. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:extended finite elements  fault rupture dynamics  bulk plasticity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号