首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识与规则的红树林遥感信息提取
引用本文:张雪红. 基于知识与规则的红树林遥感信息提取[J]. 南京气象学院学报, 2011, 0(4): 341-345
作者姓名:张雪红
作者单位:南京信息工程大学遥感学院, 南京, 210044
基金项目:国家自然科学基金(40971186)
摘    要:针对难以将红树林同陆地植被,尤其是同水体与陆地植被混合像元有效识别的现象,结合TM影像提取了能有效反映红树林湿地特征的绿度指数和湿度指数,同其他常用的NDVI、TM3/TM5、TM5/TM4等指数相比:绿度指数和湿度指数更能有效地提高红树林同陆地植被,尤其是同水体与植被混合像元的可分性.采用知识与规则方法提取红树林遥感信息,与其他学者常采用的分类特征及分类方法相比,识别精度有明显提高,Kappa系数提高0.10,错分率降低16.1个百分点.

关 键 词:红树林  绿度  湿度  知识与规则  K-T变换
收稿时间:2011-01-10

Remote sensing information extraction of mangrove based on knowledge and rules
ZHANG Xuehong. Remote sensing information extraction of mangrove based on knowledge and rules[J]. Journal of Nanjing Institute of Meteorology, 2011, 0(4): 341-345
Authors:ZHANG Xuehong
Affiliation:School of Remote Sensing, Nanjing University of Information Science & Technology, Nanjing 210044
Abstract:The classification accuracy of mangrove is always low due to the similarity of spectra between mangrove and land vegetation,especially water-vegetation mixed pixels.Greenness index and wetness index were extracted based on TM imagery,which can effectively reflect the wetland characteristics of mangrove.The greenness index and wetness index can significantly improve the separability between mangrove and water-vegetation mixed pixels by comparison with NDVI,TM3/TM5,TM5/TM4,which always were employed by other researchers.Knowledge and rules method can significantly increase the classification accuracy of mangrove,compared with conventional classification features and method employed by other researchers.And the Kappa coefficient increased 0.10 while commission error of mangrove class decreased 16.1 percent by using decision tree method.
Keywords:mangrove  greenness  wetness  knowledge and rules  K-T transformation
点击此处可从《南京气象学院学报》浏览原始摘要信息
点击此处可从《南京气象学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号