首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pleistocene geochemical stratigraphy of the borehole 1317E (IODP Expedition 307) in Porcupine Seabight,SW of Ireland: applications to palaeoceanography and palaeoclimate of the coral mound development
Authors:Xianghui Li  Chiduru Takashima  Akihiro Kano  Saburo Sakai  Yunhua Chen  Baoliang Xu  Iodp Expedition Scientists
Institution:1. State Key Laboratory for Minaral Deposit Research, Department of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, PR China;2. Environment Studies, Faculty of Culture and Education, Saga University, Saga, Japan;3. Division of Evolution of Earth Environment, Graduate School of Social and Cultural Studies, Kyushu University, Fukuoka, Japan;4. Institute for Frontier Research on Earth Evolution, JAMSTEC, Yokosuka, Japan;5. Geological Science Research Institute of Shengli Oilfield, SINOPEC, Dongying, Shandong province, PR China;6. Sichuan Research Centre, BGP Geophysical Research Institute of CNPC, Chengdu, Sichuan province, PR China
Abstract:Stable isotopes and element compositions of the fine‐grained matrix were measured for IODP Expedition 307 Hole U1317E drilled from the summit of Challenger Mound in Porcupine Seabight, northeast Atlantic, to explore the palaeoceanographic and palaeoclimatic background to development of the deep‐water coral mound. The 155 m long mound section was divided into two units by an unconformity at 23.6 mbsf: Unit M1 (2.6–1.7 Ma) and Unit M2 (1.0–0.5 Ma). Results from 519 specimens show a difference in δ13C value between Unit M1 (?0.6‰ to ?5.0‰) and Unit M2 (?1.0‰ to 1.0‰), but such a distinct difference was not seen in δ18O values (1.0‰–2.5‰), CaCO3 content (40–60 wt%), Sr/Ca ratio (2.0–8.0 mmol mol?1), and Mg/Ca ratio (10.0–20.0 mmol mol?1) through the mound. Positive δ18O and negative δ13C shifts at the mound base are consistent with the oceanographic changes in the northeast Atlantic at the beginning of the Quaternary. The positive δ13C regression in Unit M2 suggests a linkage to the mid Pleistocene intensified glaciation in the Northern Hemisphere. Warm Mediterranean Upper Core Water of Mediterranean Outflow Water, Eastern North Atlantic Water and cold Labrador Sea Water of North Atlantic Deep Water are key oceanographic features that cause spikes and shifts in stable isotope and element composition. However, the stable isotope values of the sediment matrix could not primarily record the glacial–interglacial eustatic/temperature change, but indirectly indicate current regimes of the intermediate oceanic layer where the coral mound grew. Similarly, elemental ratios and CaCO3 content may not represent the productivity and temperature of surface sea water, respectively, but superpose the fractions from both surface and bottom water. It is concluded that palaeoceanographic change coupled to the Pleistocene glacial/interglacial cycles is a key control on the geochemical stratigraphy of the matrix sediments of the carbonate mound developed in Porcupine Seabight. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:stable isotope  element geochemistry  palaeoceanography  palaeoclimate  Pleistocene  IODP 1317E  Porcupine Seabight
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号