首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Symplectic Mapping Model for the Study of 2:3 Resonant Trans-Neptunian Motion
Authors:K G Hadjifotinou  John D Hadjidemetriou
Institution:(1) Department of Physics, University of Thessaloniki, 540 06 Thessaloniki, Greece
Abstract:A symplectic mapping is constructed for the study of the dynamical evolution of Edgeworth-Kuiper belt objects near the 2:3 mean motion resonance with Neptune. The mapping is six-dimensional and is a good model for the Poincaré map of the lsquorealrsquo system, that is, the spatial elliptic restricted three-body problem at the 2:3 resonance, with the Sun and Neptune as primaries. The mapping model is based on the averaged Hamiltonian, corrected by a semianalytic method so that it has the basic topological properties of the phase space of the real system both qualitatively and quantitatively. We start with two dimensional motion and then we extend it to three dimensions. Both chaotic and regular motion is observed, depending on the objects' initial inclination and phase. For zero inclination, objects that are phase-protected from close encounters with Neptune show ordered motion even at eccentricities as large as 0.4 and despite being Neptune-crossers. On the other hand, not-phase-protected objects with eccentricities greater than 0.15 follow chaotic motion that leads to sudden jumps in their eccentricity and are removed from the 2:3 resonance, thus becoming short period comets. As inclination increases, chaotic motion becomes more widespread, but phase-protection still exists and, as a result, stable motion appears for eccentricities up to e = 0.3 and inclinations as high as i = 15°, a region where plutinos exist.
Keywords:Edgeworth-Kuiper belt  resonance  chaotic motion  nonlinear stabilities
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号