摘 要: | 利用2015—2017年湖北89个气象站地面观测温度、欧洲中心再分析资料和0~12 h预报资料回归模式输出要素与地面气温之间的关系,建立了LightGBM模型,并在2018年数据集上进行测试。结果表明,定时气温平均绝对误差由模式本身的1.8℃下降到1.1℃,2℃以内预报准确率由65.9%上升至86.6%,决定系数(拟合优度)高达0.97。该模型已经在武汉中心气象台业务化,初步选取定时气温中的极值进行2018年2—6月预报评分,24 h高、低温预报准确率分别为76.9%和91.4%,在客观产品中排名前列,较数值预报模式产品提升明显,低温预报准确率超过预报员水平。LightGBM作为一个年轻的机器学习框架,在气象要素预报方面具备良好的应用前景。
|