首页 | 本学科首页   官方微博 | 高级检索  
     

一种机器学习方法在湖北定时气温预报中的应用试验
摘    要:利用2015—2017年湖北89个气象站地面观测温度、欧洲中心再分析资料和0~12 h预报资料回归模式输出要素与地面气温之间的关系,建立了LightGBM模型,并在2018年数据集上进行测试。结果表明,定时气温平均绝对误差由模式本身的1.8℃下降到1.1℃,2℃以内预报准确率由65.9%上升至86.6%,决定系数(拟合优度)高达0.97。该模型已经在武汉中心气象台业务化,初步选取定时气温中的极值进行2018年2—6月预报评分,24 h高、低温预报准确率分别为76.9%和91.4%,在客观产品中排名前列,较数值预报模式产品提升明显,低温预报准确率超过预报员水平。LightGBM作为一个年轻的机器学习框架,在气象要素预报方面具备良好的应用前景。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号