首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen atom in intense magnetic field
Authors:V. Canuto  D. C. Kelly
Affiliation:(1) Institute for Space Studies, NASA, Goddard Space Flight Center, New York, N.Y., USA;(2) Present address: Miami University, Oxford, Ohio
Abstract:The structure of a hydrogen atom situated in an intense magnetic field is investigated. Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field strength,H a ?5×109G. Fields in excess ofH a are intense in that they are able to modify the characteristic atomic scales of length and binding energy. A second approach solves the Schrödinger equation by a combination of variational methods and perturbation theory. It yields analytic expressions for the wave functions and energy eigenvalues. A third approach determines the energy eigenvalues by reducing the Schrödinger equation to a one-dimensional wave equation, which is then solved numerically. Energy eigenvalues are tabulated for field strengths of 2×1010G and 2×1012 G. It is found that at 2×1012 G the lowest energy eigenvalue is changed from ?13.6 eV to about ?180 eV in agreement with previous variational computations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号