首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Emplacement of the Cleveland Dyke: Evidence from Geochemistry, Mineralogy, and Physical Modelling
Authors:MACDONALD  R; WILSON  L; THORPE  R S; MARTIN  A
Institution:1Department of Environmental Science, University of Lancaster Lancaster LA1 4YQ
2Department of Earth Sciences, The Open University Walton Hall, Milton Keynes MK7 6AA
Abstract:The igneous rocks of the British Tertiary Volcanic Province(BTVP) comprise intrusive central complexes and associated lavafields in northwest Scotland and northern Ireland. These centresare associated with linear dyke swarms which are radial aroundthe major central complexes. The most extensive dyke swarm isrelated to the Mull intrusive complex and includes the Clevelanddyke, which appears to extend some 430 km from Mull throughthe Scottish Midland Valley (SMV) to the coast of northeastEngland. The dyke may have been emplaced by lateral magma migrationfrom Mull, by vertical magma migration, or by a combinationof these processes associated with the emplacement of the Mullcentre and the presence of a regional stress field in northernBritain. Petrographic, mineralogical, and geochemical data for samplescollected across and along the Cleveland dyke have been usedto evaluate its petrogenesis and emplacement mechanism. Thesegment of the dyke north of, and along, the Southern UplandsFault, the southern boundary of the SMV, is not comagmatic withthat to the south, which is now defined as the Cleveland dykesensu stricto. The Cleveland dyke is an olivine-free, plagioclase-and pyroxene-phyric basaltic andesite. Plagioclase mineralogyand bulk composition indicate that it experienced a complexmagmatic history involving polybaric fractional crystallizationand minor crustal contamination. Despite this complex evolution,the dyke magma is relatively homogeneous and shows chemicalcharacteristics closely similar to tholeiitic rocks from Mull.The data substantiate lateral emplacement from this BVTP centre,rather than by vertical emplacement through heterogeneous lithosphere. Numerical modelling of dyke dynamics is consistent with emplacementof the Cleveland dyke as a single pulse of magma from the Mullcentre, flowing in a manner transitional between laminar andturbulent conditions. According to this model, the dyke (volumec. 85 km3 was initiated in a large magma chamber below Mullsubject to a small excess magmatic pressure. Lateral migrationat relatively high velocity (1–5 ms–1) caused emplacementof the dyke in 1–5 days. Following emplacement, minorvertical ascent of magma may have contributed to the local enechelon distribution of dyke segments.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号