首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural relations of charnockites of the Archaean Dharwar craton, southern India
Authors:K NAHA  R SRNIVASAN  S JAYARAM
Institution:Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India;National Geophysical Research Institute, Hyderabad 500007, India;Department of Mines and Geology, Lal Bagh Road, Bangalore 560027, India
Abstract:Abstract Two varieties of charnockites are recognized in the Dharwar craton of southern India. The style and sequence of structures in one charnockite variety, and related intermediate to basic granulites, are similar to those in the supracrustal rocks of the Dharwar Supergroup and the adjacent Peninsular Gneiss. This style has isoclinal folds with long limbs and sharp hinges with an axial planar fabric in some instances. Additional evidence of flattening is provided by pinch-and-swell and boudinage structures, with basic granulites forming boudins in the more ductile charnockites/enderbites in the limbs of isoclinal folds. These folds are involved in near-coaxial upright folding resulting in the bending of the axial planes of the isoclinal folds and the associated boudins. All these structures are overprinted by non-coaxial upright folds with axial planes striking nearly N–S. The map pattern of charnockites suggests that this sequence of structures is present not only on a mesoscopic scale, but also on a macroscopic scale. Charnockites of this variety provide, in some instances, evidence of having been migmatized to give rise to hornblende–biotite gneiss and biotite gneiss, which form a part of the Peninsular Gneiss terrane.
The second variety comprises charnockite sensu stricto with an entirely different structural style. This type occurs in the tensional domains of the hinge zones of the later buckle folds, in the necks of foliation boudinage, in shear zones and in release joints parallel to the axial planes of the later folds in the Peninsular Gneiss. Because the non-coaxial later folds are associated with a strain pattern different from, and later than, that of the isoclinal folds of the first generation, it follows that charnockites of the Dharwar craton have evolved in at least two distinct phases, separate both in time and in process.
Keywords:charnockite  Closepet Granite  Dharwar craton  Peninsular Gneiss  structural relations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号