首页 | 本学科首页   官方微博 | 高级检索  
     


Seasonal soil water storage changes beneath central Amazonian rainforest and pasture
Authors:M. G. Hodnett   L. Pimentel da Silva   H. R. da Rocha  R. Cruz Senna
Affiliation:

a Institute of Hydrology, Wallingford OX10 8BB, UK

b COPPE/UFRJ, Laboratoria Hidrologia, CP 68506, CEP21945, Rio de Janeiro, RJ, Brazil

c IAG/Universidade de São Paulo, CEP 05518-900, São Paulo, SP, Brazil

d Instituto Nacional de Pesquisas da Amazônia, 69011, Manaus, AM, Brazil

Abstract:Evaporation and infiltration were compared for tropical rainforest and pasture, near to Manaus, Brazil from October 1990 to February 1992 using measurements of soil water storage over a depth of 2 m. The soil is a clayey oxisol of low water available capacity. In both of the dry seasons studied, the maximum change in soil water storage in the forest was 154 mm and in the pasture it was 131 and 112 mm. Similar behaviour of the soil water reservoir below forest and pasture in the wet season implied that differences in evaporation and drainage were small. In the dry season, soil water storage behaviour in the upper metre of the soil was similar but there were marked differences in the second metre. The pasture took up little water from below 1.5 m but the forest appeared to utilise all of the available water in the 2 m profile in both seasons.

The water balance of the 2 m profile showed that the pasture evaporation rate was equal to that of the forest until storage had decreased 80 mm from the maximum. There was then a decline in pasture evaporation rate to 1.2 mm day−1 as the storage decreased by a further 50 mm. In contrast, the forest uptake rate remained above 3.5 mm day−1 until storage had decreased 140 mm from the maximum (within 15 mm of the extraction limit), before declining abruptly to less than 1.5 mm day−1. There was strong evidence that the forest was able to abstract water from depths greater than 3.6 m.

Spatial variability of soil water storage was significantly greater beneath the pasture than beneath the forest, particularly following rainfall events in the dry season. This was largely the result of redistribution of rainfall as local surface runoff. There was no evidence of redistribution or runoff in the forest.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号