首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical properties of granular materials: A variational approach to grain‐scale simulations
Authors:R. Holtzman  D. B. Silin  T. W. Patzek
Affiliation:Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, U.S.A.
Abstract:The mechanical properties of cohesionless granular materials are evaluated from grain‐scale simulations. A three‐dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path‐dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress‐induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:granular matter  grain‐scale simulations  quasi‐static deformation  variational approach  micromechanics  hydrate dissociation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号