首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for freeze–thaw events and their implications for rock weathering in northern Canada
Authors:Kevin Hall
Abstract:Discussions regarding weathering in cold environments generally centre on mechanical processes and on the freeze–thaw mechanism in particular. Despite the almost ubiquitous assumption of freeze–thaw weathering, unequivocal proof of interstitial rock water actually freezing and thawing is singularly lacking. Equally, many studies have used the crossing of 0 °C, or values close to that, as the basis for determining the number of ‘freeze–thaw events’. In order to assess the weathering regime at a site in northern Canada, temperatures were collected at the surface, 1 cm and 3 cm depth for sets of paving bricks, with exposures both vertical and at 45°, orientated to the four cardinal directions. Temperature data were collected at 1 min intervals for 1 year. These data provide unequivocal proof for the occurrence of the freezing and thawing of water on and within the rock (freeze–thaw events). The freeze event is evidenced by the exotherm associated with the release of latent heat as the water actually freezes. This is thought to be the ?rst record of such events from a ?eld situation. More signi?cantly, it was found that the temperature at which freezing occurred varied signi?cantly through the year and that on occasion the 1 cm depth froze prior to the rock surface. The change in freeze temperature is thought to be due to the chemical weathering of the material (coupled with on‐going salt inputs via the melting of snowfall), which, it is shown, could occur throughout the winter despite air temperatures down to ?30 °C. This ?nding regarding chemical weathering is also considered to be highly signi?cant. A number of thermal stress events were also recorded, suggesting that rock weathering in cold regions is a synergistic combination of various chemical and mechanical weathering mechanisms. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:cold regions  weathering  freeze–  thaw  chemical weathering  thermal stress fatigue  thermal data
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号