首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strengthening of moment‐resisting frame structures against near‐fault ground motion effects
Authors:Babak Alavi  Helmut Krawinkler
Abstract:Near‐fault ground motions with forward directivity are characterized by a large pulse. This pulse‐like motion may cause a highly non‐uniform distribution of story ductility demands for code‐compliant frame structures, with maximum demands that may considerably exceed the level of code expectations. Strengthening techniques for multi‐story frame structures are explored with the objective of reducing maximum drift demands. One option is to modify the code‐based SRSS distribution of story shear strength over the height by strengthening of the lower stories of the frame. The modified distribution reduces the maximum story ductility demand, particularly for weak and flexible structures. However, this strengthening technique is less effective for stiff structures, and is almost ineffective in cases in which the maximum demand occurs in the upper stories, i.e. strong and flexible structures. As an alternative, the benefits of strengthening frames with elastic and inelastic walls are evaluated. The effects of adding walls that are either fixed or hinged at the base are investigated. It is demonstrated that strengthening with hinged walls is very effective in reducing drift demands for structures with a wide range of periods and at various performance levels. Wall inelastic behavior only slightly reduces the benefits of strengthening with hinged walls.Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:near‐fault  near‐field  near‐source  pulse  frame structures  strengthening  seismic demands
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号