首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monazite and xenotime petrogenesis in the contact aureole of the Makhavinekh Lake Pluton,northern Labrador
Authors:Email author" target="_blank">Christopher?R?M?McFarlaneEmail author  James?N?Connelly  William?D?Carlson
Institution:(1) Department of Geological Sciences, The University of Texas at Austin, Austin, 78712, TX, USA;(2) Present address: Research School of Earth Sciences, Australian National University, Canberra, ACT, 0200, Australia
Abstract:High-temperature (700–900°C) metamorphism in the contact aureole of the Makhavinekh Lake Pluton (MLP), northern Labrador, led to the growth of monazite and xenotime during progressive replacement of regional garnet-bearing assemblages (M1) by lower-pressure symplectitic coronas of orthopyroxene + cordierite (M2). In the inner aureole (<500 m from the contact), where M1 garnet is strongly resorbed, high-Y+HREE monazite (XY+HREE 0.14–0.18) occurs as small isolated grains and as discontinuous rims on partially resorbed pre-M2 monazites that were liberated from garnet. Xenotime also occurs as small isolated grains within M2 coronas. Ion-microprobe dating of thin, high-Y rims indicates that new monazite growth occurred during M2. Monazite–xenotime miscibility-gap temperatures are consistent with Al-solubility-in-orthopyroxene thermometry estimates, indicating that peak temperatures in the inner aureole are accurately recorded and preserved by monazite. M2 monazite records, therefore, the temperature and timing of M2 metamorphism. Two net-transfer reactions, modelled using singular value decomposition in the system P-Y-HREE-LREE, are proposed to account for the growth of M2 phosphates: (1) 38 Grt1 + 1 Mnz1 = 1.13 Mnz2 and (2) 737 Grt1 + 1 Ap = 1 Mnz2 + 3.4 Xno2. Reaction (1) conserves P and gave rise to locally coronitic high-Y overgrowths on partially resorbed pre-M2 monazite, whereas reaction (2) accounts for the growth of small new monazite and xenotime grains. Both reactions were highly localized within individual M2 coronas due to slow intergranular diffusion accompanying fluid-undersaturated metamorphism in the MLP aureole. Similar monazite-forming reactions are expected in other polymetamorphosed granulites.This revised version was published online in November 2004 with corrections to the reference ldquoPyle JM et al. (2002)rdquo.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号