首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solar wind flow past Venus and its implications for the occurrence of the Kelvin–Helmholtz instability
Institution:1. Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria;2. Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria;3. Institute of Computational Modelling, Russian Academy of Sciences, 660036 Krasnoyarsk–36, Russia;4. INAF - Osservatoria Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy;1. Space Research Institute, Russian Academy of Sciences, Moscow, Russia;2. Space Research Institute of Austrian Academy of Science, Graz, Austria;3. Lomonosov Moscow State University, Department of Physics, Moscow, Russia;4. Nuclear Physics Institute of Lomonosov Moscow State University, Moscow, Russia;5. CNRS, IRAP, Toulouse, France;6. Swedish Institute of Space Physics, Kiruna, Sweden;1. UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d''Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble F-38041, France;2. SSAI/NASA LaRC, Hampton, VA, USA;3. Aalto University, School of Electrical Engineering, Department of Radio Science and Engineering, Espoo-Helsinki, Finland;4. ESA/ESTEC, Noordwijk, The Netherlands;5. Hungarian Academy of Science, Wigner Research Centre for Physics, Department of Space Physics and Technology, Budapest, Hungary;1. Université de Versailles Saint-Quentin-en-Yvelines, LATMOS-IPSL, 11 boulevard d?Alembert, F-78280 Guyancourt, France;2. CNRS/INSU, LATMOS-IPSL, Guyancourt, France;3. Space Research Institute (IKI), Moscow, Russia;4. Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia;5. Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands;1. Space Sciences Laboratory, 7 Gauss Way, University of California at Berkeley, Berkeley, CA 94720, United States;2. University of California, Institute of Geophysics and Planetary Physics, Los Angeles, CA, United States;3. Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, United States
Abstract:In this paper, the solar wind flow around Venus is modeled as a nondissipative fluid which obeys the ideal magnetohydrodynamic equations extended for mass loading processes. The mass loading parameter is calculated for four different cases, corresponding to solar minimum and maximum XUV flux and to nominal and low solar wind velocity. We get smooth profiles of the field and plasma parameters in the magnetosheath. Based on the results of this flow model, we investigate the occurrence of the Kelvin–Helmholtz (K–H) instability at the equatorial flanks of the ionopause of Venus. By comparing the instability growth time with the propagation time of the K–H wave, we find that the K–H instability can evolve at the ionopause for all four solar wind conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号