首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Remote sensing of a comet at millimeter and submillimeter wavelengths from an orbiting spacecraft
Institution:1. Jet Propulsion Laboratory, California Institute of Technology, MS 169-506, Pasadena, CA 91109, USA;2. Observatoire de Paris, France;3. Observatoire de Bordeaux, France;4. MPI, Solar System Research, Germany;5. National Central University, Taiwan, ROC;6. University Wilhelm, Germany;7. California Institute of Technology, Pasadena, CA, USA;8. DLR, Institut für Planetenerkundung, Berlin-Adlershof, Germany;9. University of Massachusetts, Amherst, MA, USA;1. Observatoire de Paris-Meudon, France;2. Vikram Sarabhai Space Centre, Trivandrum, India;3. National Central University, Jhongli City, Taiwan (ROC);1. Centre SÈVE, Département de biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada;2. National Research Council Canada, Energy, Mining and Environment, 6100, avenue Royalmount, Montréal, Québec, H4P 2R2, Canada;3. Centre SÈVE, Département de chimie, Faculté des Sciences, Université de Sherbrooke, 2500 boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada;1. Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, 030024, China;2. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China;3. Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia;1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China;2. Collaborative Innovation Centre of Geospatial Technology, Wuhan University, Wuhan, China;3. Faculty of Resources and Environmental Science, Hubei University, Wuhan, China;1. Department of Astronomy, University of Maryland, College Park, MD 20742, USA;2. Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France;3. ESA/ESTEC, Keplerlaan 1, Noordwijk, The Netherlands;4. Université Denis Diderot Paris 7, LESIA, Observatoire de Paris, France;5. Planetary Science Institute, Tucson, AZ 85719, USA;1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;2. University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
Abstract:The ESA Rosetta Spacecraft, launched on March 2, 2004 with the ultimate destination being Comet 67P/Churyumov–Gerasimenko, carries a relatively small and lightweight millimeter–submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument, named Microwave Instrument for the Rosetta Orbiter (MIRO), consists of a 30-cm diameter, offset parabolic reflector telescope, which couples energy in the millimeter and submillimeter bands to two heterodyne receivers. Center-band operating frequencies are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband, total power continuum measurements can be made in both bands. A 4096-channel spectrometer with 44 kHz resolution is connected to the submillimeter receiver. The spectral resolution is sufficient to observe individual, thermally broadened spectral lines (T?10 K). The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species—CO, CH3OH, NH3 and three isotopes of water, H216O, H217O and H218O. The MIRO experiment will use these species as probes of the physical conditions within the nucleus and coma. The basic quantities measured by MIRO are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This information will be used to infer coma structure and outgassing processes, including the nature of the nucleus/coma interface.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号