首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling of evaporation in a sparse millet crop using a two-source model including sensible heat advection within the canopy
Authors:M R Lund  H Soegaard
Institution:

Institute of Geography, University of Copenhagen, Oester Voldgade 10, 1350, Copenhagen K, Denmark

Abstract:During two successive growing seasons meteorological measurements were made in a pearl millet field in the Sahel to investigate the evaporation process in relation to crop growth. The evaporation was measured by eddy correlation and simulated using the Shuttleworth Wallace (SW) model Q. J. R. Meteorol. Soc. 111 (1985) 839–855]. To take sun height and multi-layer scattering into account a radiation balance model was formulated. The model indicates that partitioning of the net radiation between the vegetation and the soil may be estimated (r2=0.94) from the fraction of diffuse radiation, the leaf area index and an attenuation coefficient, but that the attenuation coefficient may not be similar in different locations. To solve the SW-model with respect to the soil resistance an iterative solution was employed with the total evaporation estimated from the Bowen-ratio calculated from eddy correlation measurements. The procedure made it possible to derive stable estimates of soil resistance at soil evaporation rates down to 25 W m?2. The soil resistance was found to be in accordance with evaporation through a dry surface layer. The SW-model indicates, that advection of sensible heat from the dry soil to the plants, increases transpiration considerably. This will cause management techniques, such as mulching and dry farming, aimed at reducing soil evaporation to be less effective than might be anticipated. The effects of raising the leaf area index to improve the microclimate is discussed in relation to management of the available water and crop security.
Keywords:Two-source model  Evaporation  Sparse vegetation  Sensible heat advection  Soil resistance  Net radiation model  Sahelian environment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号