首页 | 本学科首页   官方微博 | 高级检索  
     

公共地图服务的群体用户访问行为时序特征模型及预测
引用本文:吴华意, 李锐, 周振, 蒋捷, 桂志鹏. 公共地图服务的群体用户访问行为时序特征模型及预测[J]. 武汉大学学报 ( 信息科学版), 2015, 40(10): 1279-1286,1316. DOI: 10.13203/j.whugis20150283
作者姓名:吴华意  李锐  周振  蒋捷  桂志鹏
作者单位:1.武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉, 430079;;2.地球空间信息技术协同创新中心, 湖北 武汉, 430079;;3.国家基础地理信息中心, 北京, 100830;;4.武汉大学遥感信息工程学院, 湖北 武汉, 430079
基金项目:国家自然科学基金资助项目(41371370);国家重点基础研究发展计划(973计划)资助项目(2012CB719906)。
摘    要:群体用户对公共地图服务的访问行为具有社会性,存在着一定的群体访问行为模式。该模式具有高强度的访问聚集性与突发性,且决定着公共地图服务对云计算资源的需求。如何有效地表达和捕捉群体用户访问聚集性及其访问强度的时序变化特征,进行准确的公共地图服务负载预测,是实现按需选择和调度云计算资源,应对海量用户并发服务挑战的关键。本文基于海量的公共地图服务用户访问日志和时间序列聚类方法,建立了群体用户访问到达行为的时序分布模型;考虑降低负载预测复杂度的同时,利用访问强度具有多峰值、变强度以及周期性的特点,分割访问到达率在一个周期内时间序列上的模式区间,实现访问强度时序聚类划分的最优;基于各访问模式区间不同的访问到达概率密度的分布,提出了基于累积概率分布的时间序列平滑预测服务负载方法,该预测方法的算法复杂度低,且所需的先验数据量小。实验证明,本文提出的基于时序的群体用户访问到达率最优分割方法及其预测方法可以以较高的准确率预测服务负载。该方法在应对海量用户并发访问挑战的同时,可提高云计算资源的利用效率,解决公共地图服务质量与服务成本的平衡性问题。

关 键 词:公共地图服务  访问到达率  时间序列聚类  Fisher最优分割法  资源调度
收稿时间:2015-05-06

Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service
WU Huayi, LI Rui, ZHOU Zhen, JIANG Jie, GUI Zhipeng. Research and Prediction on Time-Sequence Characteristics of Group-User Access Behavior in Public Map Service[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1279-1286,1316. DOI: 10.13203/j.whugis20150283
Authors:WU Huayi  LI Rui  ZHOU Zhen  JIANG Jie  GUI Zhipeng
Affiliation:1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;;2.Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China;;3.National Geomatics Center of China, Beijing 100830, China;;4.School of Remote Sensing and Information Science, Wuhan University, Wuhan 430079, China
Abstract:Group-user access behavior in public map service has a social nature and there is a certain group-user access pattern, which has a high access aggregative and outburst feature. However, the feature has a great influence on the demands for cloud computing resources for public map service. Thus, how to effectively express and capture the access aggregative feature and the changes of access intensity over time, and predict the access load of public map service accurately, is the important key for selecting and scheduling cloud computing resources on demand, that can address the challenge of concurrent service for massive users. Based on the volume user access logs from public map service and the time-sequence clustering method, this paper first builds a time-sequence distribution model for group-user access arriving behavior; then using the features of multi-peak, variable and periodicity in access intensity, this paper optimally partitions the time-sequence of access arrival rate in a period into different temporal patterns; as there are different probability density distribution of access arrival rate in different temporal patterns, this paper proposes a method of service load forecasting method based on a smoothing time-sequence of cumulative probability distribution. This method has a low complexity and needs few priori data. Experimental results and method application prove that the optimal partition and prediction for the access arrival rate of group-user access based on a time-sequence have a good service response performance for massive users concurrent access, improve the utilization of cloud computing resource, and balance the service quality and cost in public map service.
Keywords:public map service  access arrival rate  time series clustering  Fisher optimum split method  resource scheduling
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号