首页 | 本学科首页   官方微博 | 高级检索  
     

超像元尺度下的多光谱图像超分辨率洪水淹没制图
引用本文:王鹏,姚红雨,张弓. 超像元尺度下的多光谱图像超分辨率洪水淹没制图[J]. 遥感学报, 2021, 25(2): 641-652
作者姓名:王鹏  姚红雨  张弓
作者单位:1.南京航空航天大学 电子信息工程学院 雷达成像与微波光子学教育部重点实验室, 南京 210016;2.湖北大学 区域开发与环境响应湖北省重点实验室, 武汉 430062;3.西安测绘研究所 地理信息工程国家重点实验室, 西安 710054
基金项目:国家自然科学基金(编号:61801211, 61871218);中国博士后面上项目(编号:2019M651824);浙江大学CAD&CG国家重点实验室开放课题(编号:A2011);湖北省区域发展与环境响应基础重点实验室开放课题(编号:2020(B)004);地理信息工程国家重点实验室开放课题(编号:SKLGIE2019-M-3-4);智能地学信息处理湖北省重点实验室开放研究课题(编号:KLIGIP-2019A05);中央基本科研业务费项目(编号:NZ2020009)
摘    要:超分辨率制图SRM(Super-resolution Mapping)技术可以有效地处理遥感图像中的混合像元,获得准确的地物类别分布信息.目前,SRM技术已经成功地应用于多光谱图像洪水淹没定位中,称为超分辨率洪水淹没制图SRFIM(Super-resolution Flood Inundation Mapping).然...

关 键 词:遥感  多光谱图像  洪水淹没定位  超分辨率制图  超像元  图像分割  随机游走算法
收稿时间:2020-06-11

Super-resolution flood inundation mapping for multispectral image based on super-pixel scale
WANG Peng,YAO Hongyu,ZHANG Gong. Super-resolution flood inundation mapping for multispectral image based on super-pixel scale[J]. Journal of Remote Sensing, 2021, 25(2): 641-652
Authors:WANG Peng  YAO Hongyu  ZHANG Gong
Abstract:Super Resolution Mapping (SRM) technology can effectively handle mixed pixels in remote sensing image and obtain the accurate distribution information of land-cover class. SRM technology is currently successfully applied to flood inundation mapping for multispectral image, which is called Super Resolution Flood Inundation Mapping (SRFIM). However, the existing SRFIM methods are often based on pixel-scale spatial correlation. This method considers the spatial relationship between pixels in the set rectangular window, but the shape of the inundation area or the non-inundation area is irregular in reality. Thus, the pixel-scale spatial correlation is insufficiently accurate, which affects the final accuracy of flood inundation mapping. Super-resolution flood inundation mapping of multispectral image based on super-pixel scale spatial correlation (SSSC-SRFIM) is proposed to solve the abovementioned problem.In SSSC-SRFIM, the original coarse multispectral image is first improved by bicubic interpolation to obtain the improved image, and the fractional image with the proportion value of each subpixel belonging to inundation area is obtained by unmixing the improved image. The first principal component of the improved image is then extracted by principal component analysis, and the image segmentation based on multi-resolution is used to segment the first principal component to obtain the super-pixels with irregular shape. Next, the fractional image and super-pixels are integrated, and the random walk algorithm is introduced to calculate the super-pixel-scale spatial correlation. Finally, according to the super-pixel-scale spatial correlation, the label of the inundation area or the non-inundation area is assigned to each sub-pixel by the class allocation method based on the unit of object. Thus, the final result of flood inundation mapping is produced.Two Landsat 8 OLI multispectral images are used to evaluate the method. The proposed SSSC-SRFIM method has better performance than the traditional methods.In the proposed SSSC-SRFIM, the super-pixel-scale spatial correlation is more accurate than pixel-scale spatial correlation because the irregular distribution shape of the actual inundation and non-inundation areas is considered. Therefore, better flood inundation mapping result can be obtained by the proposed SSSC-SRFIM.
Keywords:remote sensing  multispectral image  flood inundation  super-resolution mapping  super-pixel  image segmentation  random walk algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号