首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cloud-to-ground lightning and Mesoscale Convective Systems
Authors:Enrique V Mattos  Luiz AT Machado
Institution:National Institute for Space Research — INPE, Center for Weather Forecast and Climate Studies — CPTEC, Rodovia Presidente Dutra, km 40, Cachoeira Paulista-SP 12630000, Brazil
Abstract:This work analyzes some physical and microphysical properties of Mesoscale Convective Systems (MCSs) and cloud-to-ground lightning. Satellite data from the GOES-10 infrared and NOAA-18 and TRMM microwave channels and lightning information from the Brazilian lightning detection network (BrasilDAT) were utilized for the period from 2007 to 2009. Based on an automatic MCSs detection method, 720 MCSs life cycles were identified during the period and in the region of study, with a lightning detection efficiency of over 90%. During the diurnal cycle, maximum electrical activity occurred close to the time of maximum convective cloud fraction (18 UTC), and 3 h after the maximum normalized area expansion rate. Diurnal cycles of both properties were modulated by diurnal heating, and thus could be used to monitor diurnal variability of lightning occurrence. The electrical activity was more intense for the widest (Pearson’s correlation of 0.96) and deeper (Pearson’s correlation of 0.84) clouds, which reached 390 km size and 17 km maximum cloud top height. Area growth during the initial phase of MCSs exerted a strong influence on their size and duration, and thus also showed a potential for defining the possibility of electrical activity during their life cycle. The average lightning life cycle exhibited a maximum close to MCSs maturation, while the maximum average lightning density occurred in the MCSs initial life cycle stage. The growth rate of electrical activity during the early stages can indicate the strength of convection and the possible duration of systems with lightning occurrence. Strong condensation processes and mass flux during the growth phase of the systems can provide favorable conditions for cloud electrification and lightning occurrence. A comparison of high microwave frequencies with lightning data showed a strong relationship of vertically integrated ice content and particle size with lightning occurrence, with Pearson's correlation of 0.86 and 0.96, respectively. The polarization difference in the 85 GHz channel showed that electrical activity increases linearly with polarization reduction, associated with a high value of Pearson's correlation coefficient (above 0.90). This suggests that regions with more intense electrical activity are predominantly located in areas with a high concentration of larger ice particles that are vertically oriented, due to the existence of intense updrafts and the electric field. These results demonstrate the potential use of thermodynamic, dynamic and microphysical characteristics for analyzing thunderstorms severity, and as additional information for nowcasting and monitoring electrical activity over large regions that lack ground-based lightning sensors.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号