首页 | 本学科首页   官方微博 | 高级检索  
     


The representer method, the ensemble Kalman filter and the ensemble Kalman smoother: A comparison study using a nonlinear reduced gravity ocean model
Authors:Hans E. Ngodock   Gregg A. Jacobs  Mingshi Chen  
Affiliation:aDepartment of Marine Science, University of Southern Mississippi, Stennis Space Center, Mississippi, United States;bNaval Research Laboratory, Code 7320, Stennis Space Center, Mississippi, United States
Abstract:This paper compares contending advanced data assimilation algorithms using the same dynamical model and measurements. Assimilation experiments use the ensemble Kalman filter (EnKF), the ensemble Kalman smoother (EnKS) and the representer method involving a nonlinear model and synthetic measurements of a mesoscale eddy. Twin model experiments provide the “truth” and assimilated state. The difference between truth and assimilation state is a mispositioning of an eddy in the initial state affected by a temporal shift. The systems are constructed to represent the dynamics, error covariances and data density as similarly as possible, though because of the differing assumptions in the system derivations subtle differences do occur. The results reflect some of these differences in the tangent linear assumption made in the representer adjoint and the temporal covariance of the EnKF, which does not correct initial condition errors. These differences are assessed through the accuracy of each method as a function of measurement density. Results indicate that these methods are comparably accurate for sufficiently dense measurement networks; and each is able to correct the position of a purposefully misplaced mesoscale eddy. As measurement density is decreased, the EnKS and the representer method retain accuracy longer than the EnKF. While the representer method is more accurate than the sequential methods within the time period covered by the observations (particularly during the first part of the assimilation time), the representer method is less accurate during later times and during the forecast time period for sparse networks as the tangent linear assumption becomes less accurate. Furthermore, the representer method proves to be significantly more costly (2–4 times) than the EnKS and EnKF even with only a few outer iterations of the iterated indirect representer method.
Keywords:Data assimilation   Representer method   Ensemble Kalman filter   Ensemble Kalman smoother
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号