首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of cadmium, zinc and nitrogen status on non-protein thiols in the macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (N Aegean Sea, Greece)
Authors:Malea Paraskevi  Rijstenbil Jan W  Haritonidis Savvas
Institution:Aristotle University of Thessaloniki, School of Biology, Institute of Botany, P.O. Box 109, GR-54124 Thessaloniki, Greece. malea@bio.auth.gr
Abstract:Enteromorpha prolifera (Scheldt Estuary) and E. linza (Thermaikos Gulf) were incubated at three salinities with 100 and 200microgL(-1)Cd and Zn. The objective was to measure effects of Cd, Zn and nitrogen (N) status on the pools of metal-binding non-protein thiols: glutathione and phytochelatins, (gamma-glutamyl-cysteinyl)(n)-glycine (PC). In E. linza, ammonium pools were higher, but amino acid pools, total N and protein contents were lower than in E. prolifera. Reduced glutathione (GSH) pools were positively correlated with free glutamate and protein contents. In E. linza GSH pools increased and the ratio of reduced to oxidized glutathione (GSH:(GSH+0.5GSSG)), an indicator of oxidative stress, decreased with Cd contents, indicating Cd-induced glutathione oxidation. Total glutathione pools (reduced plus oxidized) ranged from 16nmolSgdwt(-1) in controls (at 0.5micromolCdgdwt(-1)) to 179nmolSgdwt(-1) (at 1.9micromolCdgdwt(-1)) at the highest cadmium dosage. Cadmium stimulated PC synthesis in E. prolifera which suggests that in N-rich algae, glutathione pools were high enough for PC synthesis. In both species GSH and protein increased with Zn contents, whereas GSH:(GSH+0.5GSSG) decreased, which would indicate Zn-induced oxidative stress; in E. linza, at the highest salinity the glutathione redox ratio decreased from 0.61 (at 2.9micromolZngdwt(-1)) to 0.26 (at 4.9nmolSgdwt(-1)) (at 0.5molCdgdwt(-1)). PCs were not synthesized in response to Zn, which may have resulted in Zn-induced GSH oxidation. The presence of both oxidative effects (Cd, Zn) and detoxification (Cd) could be identified by observing the responses of glutathione and PC pools to metal stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号