首页 | 本学科首页   官方微博 | 高级检索  
     检索      

科科斯脊玄武岩斜长石矿物化学及地质意义
引用本文:葛振敏,鄢全树,赵仁杰,施美娟.科科斯脊玄武岩斜长石矿物化学及地质意义[J].海洋学报,2020,42(7):93-107.
作者姓名:葛振敏  鄢全树  赵仁杰  施美娟
作者单位:1.自然资源部第一海洋研究所 海洋沉积与环境地质重点实验室,山东 青岛 266061
基金项目:国家重点研发计划(2017YFC1405502); 国家自然科学基金(41776070);山东省泰山学者工程项目。
摘    要:综合大洋钻探计划(IODP) 334和344航次在U1381站位处的两个钻孔(A孔和C孔)获得了中美洲西海岸外科科斯脊基底拉斑玄武岩,对其岩浆过程开展研究可为理解其岩石成因提供重要依据。本文对科科斯脊玄武岩中斜长石斑晶和微晶进行了详细的原位主微量元素分析,结果表明,斜长石种属为培长石、拉长石及少量中长石。部分斜长石斑晶具有正环带结构;但多数斜长石斑晶不具有明显环带,仅从核部到边部存在微弱的成分变化。斜长石斑晶与微晶的微量元素差别较大:斜长石斑晶富集轻稀土和大离子亲石元素、亏损高场强元素,且具有明显的Eu正异常;斜长石微晶不相容元素含量通常高于斜长石斑晶。根据斜长石温度计计算获得斜长石斑晶结晶温度为1 050~1 253℃,斜长石微晶结晶温度为866~1 033℃。基于以上特征,推测斜长石斑晶核部是相对原始岩浆的产物,而斑晶边部以及微晶是演化岩浆的结晶产物。斜长石斑晶的成分变化及熔蚀麻点结构是由于岩浆补给及岩浆减压上升造成的。最后,本研究推测科科斯脊基底玄武岩来自于开放的岩浆房,且岩浆房内可能存在原始岩浆的不断注入及岩浆对流。

关 键 词:拉斑玄武岩    斜长石    矿物化学    微量元素    科科斯脊    岩浆作用
收稿时间:2019/7/25 0:00:00
修稿时间:2019/10/14 0:00:00

Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge
Ge Zhenmin,Yan Quanshu,Zhao Renjie,Shi Meijuan.Mineral chemistry and geological significance of plagioclases hosted by basalts from the Cocos Ridge[J].Acta Oceanologica Sinica (in Chinese),2020,42(7):93-107.
Authors:Ge Zhenmin  Yan Quanshu  Zhao Renjie  Shi Meijuan
Institution:1.Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China2.Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266061, China3.College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract:During the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 344, tholeiitic basalt basement samples of the Cocos Ridge offshore central America were drilled in holes U1381A and U1381C at Site U1381. Studying on these samples will provide some important clues for understanding their petrogenesis. In this study we carried out in-situ major and trace elements analysis for plagioclase phenocrysts and microlites hosted by these basalt samples. The results show that plagioclases are bytownite, labradorite, with a small number of andesine. Some of the plagioclase phenocrysts show positive compositional zoning, while others only have weak compositional changes from the core to the rim of the phenocrysts. The trace element compositions of plagioclase phenocrysts and microlites are quite different. The plagioclase phenocrysts are enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements, and have obvious positive Eu anomalies. The contents of most incompatible elements of microlites are higher than those of phenocrysts. We used the classical igneous plagioclase thermometer to calculate the crystallization temperature of plagioclase phenocrysts and microlites as follows, i.e., 1 050?1 253℃ for plagioclase phenocrysts, and 866?1 033℃ for plagioclase microlites. Finally, we suggest that the core of plagioclase phenocrysts is crystallized from earlier relatively primitive magma, while the rim of the phenocrysts and microlites are crystallization products of continuous evolved magma compositions. The corrosion structure and positive compositional zoning of plagioclase phenocrysts may be mainly caused by some processes such as upwelling decompression and magma recharging. We suggest that the Cocos Ridge basaltic magma was originated from a magma chamber with continuous injection and convection of primitive magma.
Keywords:basaltic rocks  plagioclase  mineral chemistry  trace element  Cocos Ridge  magmatism
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号