首页 | 本学科首页   官方微博 | 高级检索  
     


On a class of variational equations transformable to the Gauss hypergeometric equation
Authors:Haruo Yoshida
Affiliation:(1) National Asronomical Observatory, Mitaka, Tokyo 181, Japan
Abstract:A new class of linear ordinary differential equations with periodic coefficients is found which can be transformed to the Gauss hypergeometric equation, and therefore the monodromy matrices are computable explicitly. These equations appear as the variational equations around a straight-line solution in Hamiltonian systems of the form H = T(p) + V(q), where T(p) and V(q) are homogeneous functions of p and q, respectively.
Keywords:Monodromy matrix  Gauss hypergeometric equation  stability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号