首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the global mean temperature of the thermosphere
Authors:RG Roble  BA Emery
Abstract:The solar extreme ultraviolet (e.u.v.) flux and solar ultraviolet (u.v.) flux in the Schumann-Runge continuum region have been measured by spectrometers on board the Atmosphere Explorer satellites from about 1974 to 1981. The solar flux spectra measured on 23 April 1974 (a day the Atmosphere Explorer satellite reference spectrum was obtained), 13–28 July 1976 (a period of spotless conditions near solar cycle minimum), and 19 February 1979 (a day near solar cycle maximum) are used to examine the global mean temperature structure of the thermosphere above 120 km. The results show that for solar cycle minimum the calculated global mean exospheric temperature is in agreement with empirical model predictions, indicating that the energy absorbed by the thermosphere is balanced by downward molecular thermal conduction. For solar cycle maximum the energy absorbed by the thermosphere is not balanced by downward thermal conduction but agreement between the calculated and observed temperature is obtained with the inclusion of 5.3μm radiational cooling by nitric oxide. Model calculations of the minor neutral constituents in the thermosphere show that about three times more nitric oxide is produced during solar cycle maximum than solar cycle minimum conditions. The results suggest that nitric oxide cooling is small during solar cycle minimum, because of low nitric oxide densities and low thermospheric temperatures, but it becomes significantly larger during solar cycle maximum, when nitric oxide densities and thermospheric temperatures are larger.23 April 1974 was a moderately disturbed day and the results of the global mean temperature calculation indicate that it is necessary to consider a high latitude heat source associated with the geomagnetic activity to obtain agreement between the calculated and observed global mean temperature structure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号