首页 | 本学科首页   官方微博 | 高级检索  
     

云干扰下NOAA图像数据模糊聚类方法的改进
引用本文:陈建裕,郭德方,黄鹏. 云干扰下NOAA图像数据模糊聚类方法的改进[J]. 国土资源遥感, 2004, 15(4): 7-10
作者姓名:陈建裕  郭德方  黄鹏
作者单位:浙江大学地球科学系,杭州,310027
基金项目:浙江省自然科学基金项目(编号: 400032).
摘    要:利用多时相NOAA/AVHRR热红外数据构成像元级的时间序列,根据不同像元上时间序列曲线的距离和相似度进行聚类分析;对传统的模糊C-均值聚类算法进行改进,在算法中引入指标权重,对不同质量的数据赋予不同的指标权重。试验表明,改进后的算法扩大了应用范围,克服了单幅图像常存在的云干扰,实际效果明显。

关 键 词:加权模糊C-均值聚类  时间序列曲线
文章编号:1001-070(2004)04-0007-04
收稿时间:2004-02-12
修稿时间:2004-03-29

THE IMPROVEMENT OF THE FUZZY CLUSTER METHOD FOR NOAA/AVHRR DATA COVERED WITH CLOUD
CHEN Jian-yu,GUO De-fang,HUANG Peng. THE IMPROVEMENT OF THE FUZZY CLUSTER METHOD FOR NOAA/AVHRR DATA COVERED WITH CLOUD[J]. Remote Sensing for Land & Resources, 2004, 15(4): 7-10
Authors:CHEN Jian-yu  GUO De-fang  HUANG Peng
Affiliation:Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Abstract:This paper deals with the improvement of the fuzzy C-means cluster method with weighted data by applying it to multidate NOAA/AVHRR thermal data. With the values at one point on many time images, we can construct a time series vector. In the new algorithm using the vector similarity as a new fuzzy membership expression, we can classify the thermal data. The authors also give each value a power according to its identification as a real value of surface or a value of cloud. The result shows that the new algorithm has achieved great improvement in precision and flexibility in comparison with the ISODATA method.
Keywords:Weighted fuzzy C-means clustering  Time series curve
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《国土资源遥感》浏览原始摘要信息
点击此处可从《国土资源遥感》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号