首页 | 本学科首页   官方微博 | 高级检索  
     检索      


60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China,Central Asia
Authors:ZhongQin Li  HuiLin Li  ChunHai Xu  YuFeng Jia  FeiTeng Wang  PuYu Wang  XiaoYing Yue
Institution:Tianshan Glaciological Station/State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Abstract:Worldwide examination of glacier change is based on detailed observations from only a small number of glaciers. The ground-based detailed individual glacier monitoring is of strong need and extremely important in both regional and global scales. A long-term integrated multi-level monitoring has been carried out on Urumqi Glacier No. 1 (UG1) at the headwaters of the Urumqi River in the eastern Tianshan Mountains of Central Asia since 1959 by the Tianshan Glaciological Station, Chinese Acamedey of Sciences (CAS), and the glaciological datasets promise to be the best in China. The boundaries of all glacier zones moved up, resulting in a shrunk accumulation area. The stratigraphy features of the snowpack on the glacier were found to be significantly altered by climate warming. Mass balances of UG1 show accelerated mass loss since 1960, which were attributed to three mechanisms. The glacier has been contracting at an accelerated rate since 1962, resulting in a total reduction of 0.37 km2 or 19.3% from 1962 to 2018. Glacier runoff measured at the UG1 hydrometeorological station demonstrates a significant increase from 1959 to 2018 with a large interannual fluctuation, which is inversely correlated with the glacier's mass balance. This study analyzes on the changes in glacier zones, mass balance, area and length, and streamflow in the nival glacial catchment over the past 60 years. It provides critical insight into the processes and mechanisms of glacier recession in response to climate change. The results are not only representative of those glaciers in the Tianshan mountains, but also for the continental-type throughout the world. The direct observation data form an essential basis for evaluating mountain glacier changes and the impact of glacier shrinkage on water resources in the interior drainage rivers within the vast arid and semi-arid land in northwestern China as well as Central Asia.
Keywords:Urumqi Glacier No  1  glacier change  climate change  glacier zone  the Tianshan Mountains  
点击此处可从《寒旱区科学》浏览原始摘要信息
点击此处可从《寒旱区科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号