首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detailed 3D seismic imaging of a fault zone beneath Lake Geneva, Switzerland
Authors:M Scheidhauer  F Marillier  P Thierry†
Institution:Institute of Geophysics, University of Lausanne, Lausanne, Switzerland; Ecole des Mines de Paris, Centre de Recherche en Géophysiques, Fontainebleau Cedex, France
Abstract:An efficient high‐resolution (HR) three‐dimensional (3D) seismic reflection system for small‐scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two‐dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south‐east‐dipping Tertiary Molasse beds and a major fault zone (Paudèze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three‐streamer system. It provided high‐quality data with a penetration to depths of 300 m below the water bottom of non‐aliased signal for dips up to 30° and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post‐stack time migration. Tests with 3D pre‐stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small‐scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre‐existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudèze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudèze Fault in our surveyed area.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号