首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-beam techniques for deriving wind fields from airborne doppler radars
Authors:Dr D P Jorgensen  T Matejka  J D DuGranrut
Institution:(1) Present address: Mesoscale Research & Applications Division, NOAA/National Severe Storms Laboratory, 325 Broadway, Mail Code: N/C/MRD, 80303 Boulder, Colorado, USA;(2) Present address: Mac Dill AFB, NOAA/Aircraft Operations Center, P.O. Box 6829, 30608 Tampa, Florida, USA
Abstract:Summary Two techniques for deriving horizontal and vertical air motions using vertically scanning airborne Doppler radar data are presented and discussed. These techniques make use of the scanning ability of the NOAA P-3 tail-mounted radar antenna to view a region of space from at least two vantage points during a straight-line flight track. The scanning methodology is termed the ldquoFore/Aft Scanning Techniquerdquo or FAST because the antenna is alternately scanning forward and then aft of the flight track. The major advantages of FAST over flying two quasi-orthogonal flight tracks with the antenna scanning normal to the flight track are that the data are collected in roughly half the time and the aircraft does not have to execute a right-angle turn. However, accuracy of the resulting wind field is compromised slightly because the beam intersection angle is reduced from 90° to about 50°. The reduction of area covered because of large drift angles is also discussed.A three-dimensional wind field can be constructed using the dual-Doppler equations from FAST data using the two radial velocity estimates and vertical integration of the continuity equation with a boundary condition of no vertical motion at cloud top and the Earth's surface. To keep errors in the calculated winds acceptably small, the elevation angles are typically restricted to ±45° from the horizontal to minimize contamination of the horizontal wind by terminal fallspeeds.A different, and perhaps more believable vertical velocity, can be derived using a second technique that utilizes two (or more) airborne Doppler radar equipped aircraft each using FAST to observe the echo-top vertical velocity at common point (e.g., two aircraft flying parallel flight, paths, or by using an L-shaped flight track with a single aircraft). This technique results in 4 (or more) radial velocity estimates at each point (hence is called the ldquoquad-Dopplerrdquo technique). Horizontal winds can be derived using either an overdetermined three-equation solution or an overdetermined dual-Doppler solution, whichever is more accurate. For the calculation of vertical velocity a new approach is proposed that utilizes the overdetermined triple-Doppler solution for vertical particle motion near cloud top, minus an estimate of terminal fallspeeds, as a top boundary condition for the downward vertical divergence integration to derive vertical air velocity elsewhere in the domain. In addition, this approach allows measurements at steep elevation angles allowing for more depth of coverage for a given range.To show the utility of the method, analyses of data collected using FAST are compared to conventional dual-Doppler-derived wind fields constructed from data collected simultaneously by S-band ground-based Doppler radars. An example of the quad-Doppler technique is also presented from the recently completed Tropical Oceans/Global Atmospheres Coupled Ocean/Atmosphere Response Experiment (TOGA/COARE). Comparisons of quad-Doppler vertical velocity are made with in-situ derived vertical air motions collected by the NASA DC-8 to judge the quality of the approach.With 9 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号