首页 | 本学科首页   官方微博 | 高级检索  
     

基于权值、阈值同步学习BP算法的结构损伤检测
引用本文:李学良,霍达,滕海文. 基于权值、阈值同步学习BP算法的结构损伤检测[J]. 世界地震工程, 2005, 21(2): 52-56
作者姓名:李学良  霍达  滕海文
作者单位:北京工业大学,建工学院,北京,100022;北京工业大学,建工学院,北京,100022;北京工业大学,建工学院,北京,100022
基金项目:北京市自然科学基金(8031001)重点资助项目(8031001)
摘    要:结合神经元模型,提出了一种新的BP算法:权值,阈值同步学习的BP算法,该方法将冲经元权值、阈值均看作自适应的学习变量,在学习过程中同步修改,从而提高传统BP算法的性能、应用于结构损伤检测的数值模拟算例表明,该方法收敛速度较快、检测精度较高,可以改善传统算法收敛速度慢、易出现过拟合的缺陷。

关 键 词:结构检测  BP神经网络  权值  阈值
文章编号:1007-6069(2005)02-0052-05
修稿时间:2004-11-15

Structural damage detection based on BP algorithm with weight and threshold synchro-learning ability
LI Xue-liang,HUO Da,TENG Hai-wen. Structural damage detection based on BP algorithm with weight and threshold synchro-learning ability[J]. World Information On Earthquake Engineering, 2005, 21(2): 52-56
Authors:LI Xue-liang  HUO Da  TENG Hai-wen
Abstract:Based on the nerve cell model, a new BP algorithm with weight and threshold synchro-learning ability is developed. The weight and threshold of the nerve cell model is considered as the adaptive learning variables in this new BP algorithm and are adjusted synchronously in the learning process, which improves the behavior of the traditional BP algorithm. The numerical analysis of the structural damage detection shows that this new BP algorithm provides a faster convergence to the solution and a higher accuracy of the detection, which is an improvement to the traditional BP algorithm with slower convergence and tendency to over fitting.
Keywords:structural detection  BP neural networks  weight  threshold
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号