首页 | 本学科首页   官方微博 | 高级检索  
     检索      


AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates
Authors:Chaowei Jiang  Xueshang Feng  Jian Zhang  Dingkun Zhong
Institution:(1) Shock Wave Laboratory, RWTH Aachen University, Aachen, Germany;(2) Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
Abstract:The objective of this paper is to present new extensions of the space – time conservation element and solution element (CESE) method for simulations of magnetohydrodynamic (MHD) problems in general curvilinear coordinates by using an adaptive mesh refinement (AMR) grid system. By transforming the governing MHD equations from the physical space (x,y,z) to the computational space (ξ,η,ζ) while retaining the form of conservation, the CESE method is established for MHD in the curvilinear coordinates. Utilizing the parallel AMR package PARAMESH, we present the first implementation of applying the AMR CESE method for MHD (AMR-CESE-MHD) in both Cartesian and curvilinear coordinates. To show the validity and capabilities of the AMR-CESE-MHD code, a suite of numerical tests in two and three dimensions including ideal MHD and resistive MHD are carried out, with two of them in both Cartesian and curvilinear coordinates. Numerical tests show that our results are highly consistent with those obtained previously by other authors, and the results under both coordinate systems confirm each other very well.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号