首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The spectrum of solar cosmic rays: Data of observations and numerical simulation
Authors:Yu V Balabin  É V Vashenyuk  O V Mingalev  A I Podgorny  I M Podgorny
Institution:(1) Polar Geophysical Institute, Apatity, Russia;(2) Lebedev Physical Institute, Moscow, Russia;(3) Institute of Astronomy, Moscow, Russia
Abstract:Analysis of the relativistic proton spectra of solar flares occurring in the 23rd solar activity cycle derived from data of a worldwide neutron monitor network and numerical modeling both provide evidence for the acceleration of charged particles by an electric field that arises in coronal current sheets during reconnection. The method used to obtain the spectra is based on simulating the response of a neutron monitor to an anisotropic flux of relativistic solar protons with specified parameters and determining the characteristics of the primary relativistic solar protons by fitting model responses to the observations. Studies of the dynamics of the energy spectra distinguish two populations of relativistic protons in solar cosmic-ray events: the so-called fast component, which arrives at the flux front of the solar cosmic rays, followed by the delayed slow component. The fast component is characterized by strong anisotropy and an exponential energy spectrum, in agreement with the spectrum yielded by mathematical modeling of particle acceleration by an electric field directed along the X line of the magnetic field. The slow component, whose propagation is probably diffusive, has a power-law spectrum.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号