首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experiments and models of anhydrous,basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar
Authors:Huai-Jen Yang  Rosamond J Kinzler  T L Grove
Institution:(1) Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, US;(2) Lamont-Doherty Geological Observatory of Columbia University, Palisades, NY 10964, USA, US
Abstract: A new method for modeling fractional crystallization processes that involve olivine (ol), plagioclase (plag) and augite (aug) is presented. This crystallization assemblage is the major control on the chemical variations in mid-ocean ridge basalts. The compositional and temperature variations in ol-plag-aug saturated basalts over a range of pressures are described using empirical expressions. A data base of 190 experiments in natural and basalt-analog chemical systems is used to describe temperature, Al, Ca and Mg molar fractions as functions of Si, Fe, Na, Ti and K molar fractions and pressure. Increases in the abundances of Na and K cause Ca and Mg abundances to decrease and Al abundance to increase in ol-plag-aug saturated melts. The equations can be used to predict pressure and temperature and thus provide a useful thermobarometer. A model is described to calculate ol-plag-aug fractional crystallization as a function of pressure and melt composition, using melt and augite models developed here, combined with existing models for olivine-melt and plagioclase-melt equilibria. We compare the fractional crystallization sequence of ALV-2004-3-1 predicted from the models presented in this paper, Langmuir et al. (1992) modified by Reynolds (1995), Ghiorso and Sack (1995) and Ariskin et al. (1993) at 0.001 and 4 kbar. As an example the model is applied to estimate pressure of crystallization of glasses from the east flank of the East Pacific Rise at 11°45′N. Received: 24 July 1995 / Accepted: 12 January 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号