首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth of homogeneously nucleated water droplets: a quantitative comparison of experiment and theory
Authors:Alexander Fladerer  Reinhard Strey  
Institution:Institut für Physikalische Chemie, Universität zu Köln, Luxemburger Straße 116, D-50939, Koln, Germany
Abstract:The formation of aerosols proceeds through nucleation, growth and aging stages. The understanding of nucleation and droplet growth is essential for handling the more complex atmospheric condensation processes. To achieve this goal, measurements of the nucleation rate of various systems are performed in an expansion chamber. In this manner nucleation and growth are decoupled by applying a short nucleation pulse of about 1 ms during which the nuclei are formed. The subsequent droplet growth is quantitatively monitored by Mie-scattering. To this end, the Mie-maxima and -minima are detected as a function of time and compared to theoretical Mie-scattering calculations for increasing radii. In this fashion, a wealth of growth curves for pure water depending on supersaturations, number densities of droplets, and temperatures were obtained. Following the approach of Fuchs and Sutugin Fuchs, N.A., Sutugin, A.G., 1970. Highly Dispersed Aerosols. Ann Arbor Science Publishers, Ann Arbor; Fuchs, N.A., Sutugin, A.G., 1971. In: Hidy, G.M., Brock, J.R. (Eds.), International Reviews in Aerosol Physics and Chemistry: Topics in Current Aerosol Research (Part 2), Pergamon, New York, p. 1], we calculated theoretical growth curves taking into account the depletion of water vapor, the increase of droplet- and system-temperature, temperature-dependent functions of the diffusion coefficient, surface tension, liquid density and latent heat of condensation. The calculated growth curves and experimental data for 230, 240 and 250 K with number densities of droplets between 5×102 and 2×106 droplets/cm3 yield quantitative agreement between theory and experiment. This is remarkable in so far as the theory contains no adjustable parameters and assumes the sticking probability of the vapor molecules to be unity. Using a sticking probability smaller than 0.8 in the calculation leads to growth functions already outside the experimental error.
Keywords:Water droplets  Experiment  Theory  Droplet growth  Homogeneous nucleation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号