首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Occurrence of Sc,Co and Ni in Manganese Ore from Western China
Institution:;1.Department of Mineral Processing Engineering of Guangzhou Research Institute of Non-ferrous Metals
Abstract:China’s manganese resources are usually associated with the valuable elements such as silver, lead, zinc, cobalt, nickel, scandium, etc which should be comprehensively recovered during the manganese beneficiation. A manganese ore from western China contains Mn 23.18%, Co 0.073%, Ni 0.21% and Sc 0.013%. The mineralogy composition of ore and the occurrence of associated elements of Sc, Co as well as Ni are studied in this paper. According to the results, the manganese minerals in this ore are mainly lithiophorite and a little secondary pyrolusite. The lithiophorite in this ore is rich in aluminum and actually it is the generic name for the multi-mineral aggregates mixed by silicon, aluminum and iron, which is quite different with the ordinary psilomelane. There is not any Sc, Ni or Co mineral in this ore and more than 98% of Sc, Ni and Ni exists in lithiophorite and pyrolusite. The distribution of Sc, Co and Ni in lithiophorite is further studied by EPMA and the results indicate that Sc and Co in lithiophorite is sparse and dispersed distribution while Ni usually distributes in the argillaceous lithiophorite and is local enrichment. Reduction-sulfuric acid leaching tests show that the dissolution of Sc and Co happens before lithiophorite dissolves; the dissolution rate of Sc and Co is almost the same, which is significantly higher than the dissolution rate of manganese. However, the dissolution rate of Ni is extremely low with the dissolution of manganse, which indicates that Ni is hard to dissolve and its dissolution rate obviously lags behind that of Mn, Sc and Co. The conclusion can be drawn that Sc and Co exist in the lithiophorite crystals as interface adsorption while Ni exists in the clay (kaolinite) mixed up with lithiophorite as interface adsorption. The conclusion indicates that Sc and Co can dissolve before the dissolution of manganese at a high dissolution rate in the hydrometallurgical process while Ni is also into the solution through desorption from the interface of clay but its dissolution rate is rather slow because of the insoluble nature of clay.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号