顾及最小二乘拟合端点效应的日长变化预报 |
| |
摘 要: | 针对日长(Length Of Day,LOD)变化预报中最小二乘(Least Squares,LS)拟合存在端点效应的问题,采用时间序列分析方法对日长变化序列进行端点延拓,形成一个新序列,然后用新序列建立最小二乘模型,最后再结合最小二乘模型和自回归(Autoregressive,AR)模型对原始日长变化序列进行预报。实验结果表明,在日长变化序列两端增加统计延拓数据,能有效减小最小二乘拟合序列的端点畸变,从而提高日长变化的预报精度,尤其对中长期预报精度提高明显。
|
本文献已被 CNKI 等数据库收录! |
|