首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Early Palaeoproterozoic volcanism of the Karelian Craton: age,sources, and geodynamic setting
Authors:Maria M Bogina  Valeriy L Zlobin  Michael V Mints
Institution:1. Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Moscow, Russialekhta@mail.ru;3. Geological Institute (GIN), Russian Academy of Sciences, Moscow, Russia
Abstract:A combined study of major and trace elements, Nd isotopes, and U-Pb systematics has been conducted for the early Palaeoproterozoic (Sumian) volcanic rocks and granites localized in different portions of the Karelian Craton. SHRIMP dating of zircons from the Sumian basalts indicates an emplacement age of 2423 ± 31 Ma, which constrains the lower age boundary of the early Palaeoproterozoic sequence at the Karelian Craton. The early Palaeoproterozoic mafic volcanic rocks of the Karelian Craton show practically no lateral geochemical and isotope-geochemical variations. The rocks bear signs of crustal contamination, in particular Nb and Ti negative anomalies, light rare earth element (LREE) enrichment, and nonradiogenic Nd isotope composition. However, some correlations between incompatible element ratios suggest that the crustal signatures were mainly inherited from mantle sources metasomatized during a previous subduction event. En route to the surface, melts presumably experienced only insignificant contamination by crustal material. Felsic rocks do not define common trends with mafic rocks and were formed independently. They exhibit higher REE contents, large-ion lithophile element (LILE) enrichment, and extremely wide variations in Nd isotope composition, which clearly demonstrates a considerable contribution of heterogeneous basement to their formation. Geochemically, the felsic rocks of the Karelian Craton correspond to A2-type granites and were formed by melting of crustal rocks in an anorogenic setting. Their possible sources are Archaean sanukitoid-type granitoids and Archaean granite gneisses. The high Yb content and pronounced Eu anomaly imply that they were generated from a garnet-free pyroxene – plagioclase source at shallow depths. By the Palaeoproterozoic, the older Vodlozero block was colder than the Central Domain, which facilitated the development of the brittle deformations and faulting and, correspondingly, rapid magma ascent to the surface without melting of crustal rocks. This resulted in the absence of felsic rocks and the formation of more primitive basalts in this area.
Keywords:early Palaeoproterozoic  Karelian Craton  mantle plume  rift  metasomatized mantle  subduction component  Nb anomaly  LREE enrichment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号