首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Search for effects of comet S-L 9 fragment impacts on low radio frequency emission from Jupiter
Authors:T D Carr  F Reyes  L Garcia  W B Greenman  J Levy  C A Higgins  J M De Buizer  J May  J Aparici  H Alvarez  F Olmos  J A Phillips  T Clark  S Padin
Institution:(1) Department of Astronomy, University of Florida, Gainesville, FL, USA;(2) Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago, Chile;(3) Owens Valley Radio Observatory, Caltech 105-24, Pasadena, CA, USA
Abstract:Decametric radio observations of Jupiter were made before, during, and after the impacts of the fragments of the comet S-L 9 with the planet, from the University of Florida Radio Observatory, the Maipu Radio Astronomy Observatory of the University of Chile, and the Owens Valley Radio Observatory of the California Institute of Technology. The decametric radiation was monitored at frequencies from 16.7 to 32 MHz. The minimum detectable flux densities were on the order of 30 kJy, except for that of the large 26.3 MHz array in Florida, which was about 1 kJy. There was no significant enhancement or suppression of the decametric L-burst or S-burst emission with respect to normal activity patterns that might be attributed to the fragment entries. However, a burst of left-hand elliptically polarized radiation having a considerably longer duration than an L-burst was observed almost simultaneously with the impact of the large fragment Q2, and another with right-hand elliptical polarization was observed simultaneously with Q1. We consider the possibility that these two bursts were emitted just above the local electron cyclotron frequencies from the southern and northern ends, respectively, of magnetic flux tubes that had been excited in some way by the proximity of fragments Q2 and Q1.In addition to the monitoring of the decametric radiation, a search was conducted for possible comet-enhanced Jovian synchrotron radiation at 45 MHz using a large dipole antenna array at the observatory in Chile. This frequency is above the cutoff of the decametric radiation, but is considerably below the lowest frequency at which the synchrotron emission has previously been detected. The minimum detectable flux density with the 45 MHz antenna was about 5 Jy. No synchrotron emission at all was found before, during, or after the entry of the comet fragments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号