首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of a Ground-Based LIF Instrument for Measuring HOx Radicals: Instrumentation and Calibrations
Authors:Yugo Kanaya  Yasuhiro Sadanaga  Jun Hirokawa  Yoshizumi Kajii  Hajime Akimoto
Institution:(1) Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
Abstract:An instrument for measuringtropospheric OH/HO2 radicals by laser-inducedfluorescence developed in our laboratory is presentedin detail. It is based on FAGE (fluorescence assay bygas expansion) technique and OH is both excited anddetected at 308 nm corresponding to its A-X(0,0) band.The alignment of the laser beam, the design of thesample gas inlet, and the devices for the fluorescencedetection are optimized so as to reduce the backgroundsignal while keeping the OH sensitivity as high aspossible. A thermalized position of the expanding gasbeam is probed in our system and we did not observe asevere decrease of the HOx sensitivities under humidconditions. An optical fiber is used for deliveringthe laser light to the fluorescence detection cellmounted outside at a high position. Thus the laserbeam alignment is by far simplified and is made highlyreproducible, once settled properly. For thecalibration, two methods are employed: a system withlaser absorption measurements of OH and a system ofsimultaneous photolysis of H2O and O2. Thecalibration factors are compared well within thecombined uncertainty. Using the latter system, theconversion efficiency of HO2 to OH by NO additionis measured to be around 90%. The detection limitsfor OH and HO2 (S/N = 2) are estimated to be3.3 × 106 and 3.6 × 106cm–3 at noon,respectively, with an integration time of 1 min. Theresults of test observations at our institute are alsopresented.
Keywords:HOx calibration  HOx instrument  laser-induced fluorescence  optical fiber
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号